Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 065202    DOI: 10.1088/1674-1056/20/6/065202
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Shock wave velocity measurement in the Al2O3 under ultrahigh pressure

Wang Feng (王峰)a, Peng Xiao-Shi (彭晓世)aLiu Shen-Ye (刘慎业)aLi Yong-Sheng (李永升)bJiang Xiao-Hua (蒋小华)aDing Yong-Kun (丁永坤)a 
a Research Centre of Laser Fusion, Chinese Academy of Engineering Physics, Mianyang 621900, China; b Institute of Applied Physics and Computational Mathematics, Beijing 100088, China
Abstract  In indirect-drive experiment, the blank effect caused by X-rays from Hohlraum will show the dark area in time scale of optical streak camera (OSC). This blank effect, which was a serious problem in indirect-drive shock wave experiments, has been explained by the semiconductor model. The X-rays cause the band to band transition and the probe laser is absorbed by the intraband transition, which leads to a dark region in time scale of the OSC image. In the experiment, the reflectivity of shock wave front was measured to be about 50% at shock wave velocity 32 km/s and was compared to the theoretical calculations with the Drude free electron model. From the experimental data, it is found that the blank effect can be avoided at radiation temperature of 170 eV if the Al layer is thicker than 60 μm.
Keywords:  shock wave      optical diagnosis      interfere meter      semiconductor model  
Received:  10 September 2010      Revised:  24 February 2011      Accepted manuscript online: 
PACS:  52.35.Tc (Shock waves and discontinuities)  
  52.50.Lp (Plasma production and heating by shock waves and compression)  
  62.50.+p  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10805041) and the Science and Technology Foundation on Plasma Physics Laboratory (Grant No. 9140C6801021001).

Cite this article: 

Wang Feng (王峰), Peng Xiao-Shi (彭晓世), Liu Shen-Ye (刘慎业), Li Yong-Sheng (李永升), Jiang Xiao-Hua (蒋小华), Ding Yong-Kun (丁永坤) Shock wave velocity measurement in the Al2O3 under ultrahigh pressure 2011 Chin. Phys. B 20 065202

[1] Hicks D G, Boehly T R, Celliers P M, Bradley D K, Eggert J H, McWilliams R S, Jeanloz R and Collins G W 2008 Phys. Rev. B78 174102
[2] McWilliams R S, Eggert J H, Hicks D G, Bradley D K, Celliers P M, Spaulding D K, Boehly T R, Collins G W and Jeanloz R 2010 Phys. Rev. B81 014111
[3] Ozaki N, Ono T, Takamatsu K, Nakano M, Kataoka T, Yoshida M, Wakabayashi K, Nakai M, Nagai K, Shigemori K, Yamanaka T and Kondo K 2005 Phys. Plasmas12 124503
[4] Celliers P M, Bradley D K, Collins G W, Hicks D G, Boehly T R and Armstrong W J 2004 Rev. Sci. Instrum. 75 4916
[5] Bradley D K, Eggert J H, Hicks D G, Celliers P M, Moon S J, Cauble R C and Collins G W 2004 Phys. Rev. Lett.93 195506
[6] Hicks D G, Boehly T R, Celliers P M, Eggert J H, Vianello, Meyerhofer D D and Collins G W 2005 Phys. Plasmas12 082702
[7] Barker L M and Hollenbach R E 1972 J. Appl. Phys. 43 4669
[8] Smith R F, Eggert J H, Saculla M D, Jankowski A F, Bastea M, Hicks D G and Collins G W 2008 Phys. Rev. Lett.101 065701
[9] Theobald W, Miller J E, Boehly T R, Vianello E, Meyerhofer D D, Sangste T C, Eggert J and Celliers P M 2006 Phys. Plasmas13 122702
[10] Chen K G, Zhu W J, Ma W, Deng X L, He H L and Jing F Q 2010 Acta Phys. Sin. 59 1225 (in Chinese)
[11] Wang H Y, Liu J H, Peng G R and Wang W K 2010 Chin. Phys. B 19 096203
[12] Olson R E, Bradley D K, Rochau G A, Collins G W, Leeper R J and Suter L J 2006 Rev. Sci. Instrum.77 10E523
[13] Huang X G, Fu S Z, Shu H, Ye J J, Wu J, Xie Z Y, Fang Z H, Jia G, Luo P Q, Long T, He J H, Gu Y and Wang S J 2010 Acta Phys. Sin. 59 6394 (in Chinese)
[14] Li Y H, Liu F S, Ma H Y, Cheng X L, Ma X J, Sun Y Y, Zhang M J and Xue X D 2010 Acta Phys. Sin. 59 2104 (in Chinese)
[15] Li X M, Yu Y Y, Li Y H, Zhang L, Ma Y, Wang X S and Fu Q W 2010 Acta Phys. Sin. 59 2691 (in Chinese)
[16] Xi F and Cai L C 2009 Chin. Phys. B 18 2898
[17] Hicks D G, Celliers P M, Collins G W, Eggert J H and Moon S J 2003 Phys. Rev. Lett. 91 035502
[18] Celliers P M, Collins G W, Da Silva L B, Gold D M, Cauble R, Wallace R J, Foord M E and Hammel B A 2000 Phys. Rev. Lett.84 5564
[1] Generation of laser-driven flyer dominated by shock-induced shear bands: A molecular dynamics simulation study
Deshen Geng(耿德珅), Danyang Liu(刘丹阳), Jianying Lu(鲁建英), Chao Chen(陈超), Junying Wu(伍俊英), Shuzhou Li(李述周), and Lang Chen(陈朗). Chin. Phys. B, 2022, 31(2): 024101.
[2] Comparative investigation of microjetting generated from monocrystalline tin surface and polycrystalline tin surface under plane impact loading
Shao-Wei Sun(孙少伟), Guan-Qing Tang(汤观晴), Ya-Fei Huang(黄亚飞), Liang-Zhi Cao(曹良志), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2021, 30(10): 104701.
[3] Experimental investigation on the properties of liquid film breakup induced by shock waves
Xianzhao Song(宋先钊), Bin Li(李斌), Lifeng Xie(解立峰). Chin. Phys. B, 2020, 29(8): 086201.
[4] Studies of flow field characteristics during the impact of a gaseous jet on liquid-water column
Jian Wang(王健), Wen-Jun Ruan(阮文俊), Hao Wang(王浩), Li-Li Zhang(张莉莉). Chin. Phys. B, 2019, 28(6): 064704.
[5] Investigation of convergent Richtmyer-Meshkov instability at tin/xenon interface with pulsed magnetic driven imploding
Shaolong Zhang(张绍龙), Wei Liu(刘伟), Guilin Wang(王贵林), Zhengwei Zhang(章征伟), Qizhi Sun(孙奇志), Zhaohui Zhang(张朝辉), Jun Li(李军), Yuan Chi(池原), Nanchuan Zhang(张南川). Chin. Phys. B, 2019, 28(4): 044702.
[6] Study on shock wave-induced cavitation bubbles dissolution process
Huan Xu(许欢), Peng-Fei Fan(范鹏飞), Yong Ma(马勇), Xia-Sheng Guo(郭霞生), Ping Yang(杨平), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2017, 26(2): 024301.
[7] Lower order three-dimensional Burgers equation having non-Maxwellian ions in dusty plasmas
Apul N Dev. Chin. Phys. B, 2017, 26(2): 025203.
[8] Conditions for laser-induced plasma to effectively remove nano-particles on silicon surfaces
Jinghua Han(韩敬华), Li Luo(罗莉), Yubo Zhang(张玉波), Ruifeng Hu(胡锐峰), Guoying Feng(冯国英). Chin. Phys. B, 2016, 25(9): 095204.
[9] Influence of shockwave profile on ejecta from shocked Pb surface: Atomistic calculations
Guo-Wu Ren(任国武), Shi-Wen Zhang(张世文), Ren-Kai Hong(洪仁楷), Tie-Gang Tang(汤铁钢), Yong-Tao Chen(陈永涛). Chin. Phys. B, 2016, 25(8): 086202.
[10] Laser-driven flier impact experiments at the SG-III prototype laser facility
Shui Min (税敏), Chu Gen-Bai (储根柏), Xin Jian-Ting (辛建婷), Wu Yu-Chi (吴玉迟), Zhu Bin (朱斌), He Wei-Hua (何卫华), Xi Tao (席涛), Gu Yu-Qiu (谷渝秋). Chin. Phys. B, 2015, 24(9): 094701.
[11] Sound field prediction of ultrasonic lithotripsy in water with spheroidal beam equations
Zhang Lue (张略), Wang Xiang-Da (王祥达), Liu Xiao-Zhou (刘晓宙), Gong Xiu-Fen (龚秀芬). Chin. Phys. B, 2015, 24(1): 014301.
[12] Shadowgraph investigation of plasma shock wave evolution from Al target under 355-nm laser ablation
Liu Tian-Hang (刘天航), Hao Zuo-Qiang (郝作强), Gao Xun (高勋), Liu Ze-Hao (刘泽昊), Lin Jing-Quan (林景全). Chin. Phys. B, 2014, 23(8): 085203.
[13] The internal propagation of fusion flame with the strong shock of a laser driven plasma block for advanced nuclear fuel ignition
B. Malekynia, S. S. Razavipour. Chin. Phys. B, 2013, 22(5): 055202.
[14] Effects of density profile and multi-species target on laser-heated thermal-pressure-driven shock wave acceleration
Wang Feng-Chao (王凤超). Chin. Phys. B, 2013, 22(12): 124102.
[15] Effects of bi-kappa distributed electrons on dust-ion-acoustic shock waves in dusty superthermal plasmas
M. S. Alam, M. M. Masud, A. A. Mamun. Chin. Phys. B, 2013, 22(11): 115202.
No Suggested Reading articles found!