Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 064201    DOI: 10.1088/1674-1056/20/6/064201
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Second harmonic generation in inhomogeneous MgO:LiNbO3 waveguides

Li Guo-Hui(李国辉), Jiang Hai-Ling(蒋海灵), and Xu Xin-Ye(徐信业)
State Key Laboratory of Precision Spectroscopy and Department of Physics, East China Normal University, Shanghai 200062, China
Abstract  A fibre laser at 1111.6 nm is frequency doubled by two inhomogeneous MgO:LiNbO$_{3}$ waveguides and the output powers of 85 mW and 49 mW at 555.8 nm have been generated with the conversion efficiencies of 47% and 27% respectively. By analysing  the second harmonic generation temperature tuning curves, we investigate the influence of the optical inhomogeneities upon the  conversion efficiency. The final result shows that the efficiency difference is mainly affected by the optical inhomogeneities in  our case.
Keywords:  second harmonic generation      optical inhomogeneities      waveguide  
Received:  31 August 2010      Revised:  24 December 2010      Accepted manuscript online: 
PACS:  42.55.Wd (Fiber lasers)  
  42.60.By (Design of specific laser systems)  
  42.65.Ky (Frequency conversion; harmonic generation, including higher-order harmonic generation)  
  42.65.Wi (Nonlinear waveguides)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10774044), the National Key Basic Research and Development Program of China (Grant No. 2010CB922903), the Shanghai Pujiang Talent Program of China (Grant No. 07PJ14038), and the Ph D Program Scholarship Fund of East China Normal University 2009 (Grant No. 2009049).

Cite this article: 

Li Guo-Hui(李国辉), Jiang Hai-Ling(蒋海灵), and Xu Xin-Ye(徐信业) Second harmonic generation in inhomogeneous MgO:LiNbO3 waveguides 2011 Chin. Phys. B 20 064201

[1] Parameswaran K R, Kurz J R, Roussev R V and Fejer M M 2002 Opt. Lett. 27 43
[2] Parameswaran K R, Route R K, Kurz J R, Roussev R V and Fejer M M 2002 Opt. Lett. 27 179
[3] Fejer M M, Magel G A, Jundt D H and Byer R L 1992 IEEE J. Quantum Electron. 28 2631
[4] Sakai K, Koyata Y and Hirano Y 2007 Opt. Lett. 32 2342
[5] Jechow A, Schedel M, Stry S, Sacher J and Menzel R 2007 Opt. Lett. 32 3035
[6] Tian X T, Li Y M, Liu Q and Zhang K S 2009 Chin. Phys. B 18 2324
[7] Nash F R, Boyd G D, Sargent M and Bridenbaugh P M 1970 J. Appl. Phys. 41 2564
[8] Bortz M L, Field S J, Fejer M M, Nam D W, Waarts R G and Welch D F 1994 IEEE J. Quantum Electron. 30 2953
[9] Helmfrid S and Arvidsson G 1991 J. Opt. Soc. Am. B 8 797
[10] Lee Y L, Noh Y C, Jung C, Yu T J, Yu B A, Lee J, Ko D K and Oh K 2005 Appl. Phys. Lett. 86 011104
[11] Zhang D L, Wu C and Pun E Y B 2010 Chin. Phys. B 19 024214
[12] Nightingale J L, Silva W J, Reade G E, Rybicki A, Kozlovsky W J and Byer R L 1986 Proc. SPIE 681 20
[13] Gayer O, Sacks Z, Galun E and Arie A 2008 Appl. Phys. B 91 343
[14] Helmfrid S, Arvidsson G and Webjörn J 1992 J. Opt. Soc. Am. B 10 222
[1] Non-Markovianity of an atom in a semi-infinite rectangular waveguide
Jing Zeng(曾静), Yaju Song(宋亚菊), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(3): 030305.
[2] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[3] Spontaneous emission of a moving atom in a waveguide of rectangular cross section
Jing Zeng(曾静), Jing Lu(卢竞), and Lan Zhou(周兰). Chin. Phys. B, 2023, 32(2): 020302.
[4] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[5] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[6] Photon-interactions with perovskite oxides
Hongbao Yao(姚洪宝), Er-Jia Guo(郭尔佳), Chen Ge(葛琛), Can Wang(王灿), Guozhen Yang(杨国桢), and Kuijuan Jin(金奎娟). Chin. Phys. B, 2022, 31(8): 088106.
[7] Sound-transparent anisotropic media for backscattering-immune wave manipulation
Wei-Wei Kan(阚威威), Qiu-Yu Li(李秋雨), and Lei Pan(潘蕾). Chin. Phys. B, 2022, 31(8): 084302.
[8] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[9] Nonreciprocal two-photon transmission and statistics in a chiral waveguide QED system
Lei Wang(王磊), Zhen Yi(伊珍), Li-Hui Sun(孙利辉), and Wen-Ju Gu(谷文举). Chin. Phys. B, 2022, 31(5): 054206.
[10] A multi-frequency circularly polarized metasurface antenna array based on quarter-mode substrate integrated waveguide for sub-6 applications
Hao Bai(白昊), Guang-Ming Wang(王光明), Xiao-Jun Zou(邹晓鋆), Peng Xie(谢鹏), and Yi-Ping Shi(石一平). Chin. Phys. B, 2022, 31(5): 054102.
[11] Creation of multi-frequency terahertz waves by optimized cascaded difference frequency generation
Zhong-Yang Li(李忠洋), Jia Zhao(赵佳), Sheng Yuan(袁胜), Bin-Zhe Jiao(焦彬哲), Pi-Bin Bing(邴丕彬), Hong-Tao Zhang(张红涛), Zhi-Liang Chen(陈治良), Lian Tan(谭联), and Jian-Quan Yao(姚建铨). Chin. Phys. B, 2022, 31(4): 044205.
[12] Independently tunable dual resonant dip refractive index sensor based on metal—insulator—metal waveguide with Q-shaped resonant cavity
Haowen Chen(陈颢文), Yunping Qi(祁云平), Jinghui Ding(丁京徽), Yujiao Yuan(苑玉娇), Zhenting Tian(田振廷), and Xiangxian Wang(王向贤). Chin. Phys. B, 2022, 31(3): 034211.
[13] Mode characteristics of nested eccentric waveguides constructed by two cylindrical nanowires coated with graphene
Ji Liu(刘吉), Lixia Yu(于丽霞), and Wenrui Xue(薛文瑞). Chin. Phys. B, 2022, 31(3): 036803.
[14] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[15] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
No Suggested Reading articles found!