Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 060702    DOI: 10.1088/1674-1056/20/6/060702
GENERAL Prev   Next  

A k-band broadband monolithic distributed frequency multiplier based on nonlinear transmission line

Huang Jie(黄杰)a)b)†, Dong Jun-Rong(董军荣)a), Yang Hao(杨浩)a), Zhang Hai-Ying(张海英)a), Tian Chao(田超) a), and Guo Tian-Yi(郭天义)a)
a Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China; b School of Physical Science and Technology, Southwest University, Chongqing 400715, China
Abstract  A fabrication technology of GaAs planar Schottky varactor diode (PSVD) is successfully developed and used to design and manufacture GaAs-based monolithic frequency multiplication based on 23-section nonlinear transmission lines (NLTLs) consisting of a coplanar waveguide transmission line and periodically distributed PSVDs. The throughout design and optimization procedure of 23-section monolithic NLTLs for frequency multiplication in the k-band range is based on a large signal equivalent model of PSVD extracted from small-signal S-parameter measurements. This paper reports that the distributed SPVD exhibits a capacitance ratio of 5.4, a normalized capacitance of 0.86 fF/μ2 and a breakdown voltage in excess of 22 V. The integrated 23-section NLTLs fed by 20-dBm input power demonstrates a 26-GHz peak second harmonic output power of 14-dBm with 25.3% conversion efficiency in the second harmonic output frequency range of 6 GHz-26 GHz.
Keywords:  nonlinear transmission line      frequency multiplication      harmonic generation      planar Schottky varactor diode  
Received:  17 November 2010      Revised:  21 February 2011      Accepted manuscript online: 
PACS:  07.57.Hm (Infrared, submillimeter wave, microwave, and radiowave sources)  
  84.40.Dc (Microwave circuits)  
  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Hi (Surface barrier, boundary, and point contact devices)  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 60806024), the Fundamental Research Funds for Central Universities, China (Grant No. XDJK2009C020), and the Singapore{China Joint Research Project (Grant No. 2009DFA12130).

Cite this article: 

Huang Jie(黄杰), Dong Jun-Rong(董军荣), Yang Hao(杨浩), Zhang Hai-Ying(张海英), Tian Chao(田超), and Guo Tian-Yi(郭天义) A k-band broadband monolithic distributed frequency multiplier based on nonlinear transmission line 2011 Chin. Phys. B 20 060702

[1] Carman E, Case M, Kamegawa M, Yu R, Giboney K and Rowell M 1992 IEEE Microw. Guided Wave Lett. 2 253
[2] Wang S G, Zhang Y, Zhang Y M and Zhang Y M 2010 Chin. Phys. B 19 017203
[3] Salameh D and Linton D 1999 IEEE Trans. Microw. Theory Tech. 47 1118
[4] Marsland R A, Shakouri M S and Bloom D M 1990 Electron. Lett. 26 1235
[5] Shi H, Zhang W M, Domier C W, Luhmann N C, Sjogren Jr L B and Liu H X L 1995 IEEE Trans. Microw. Theory Tech. 43 780
[6] Melique X, Carbonell J, Havart R, Mounaix P, Vanbesien O and Lippens D 1998 IEEE Microw. Guided Wave Lett. 8 254
[7] Carman E, Giboney K, Case M, Kamegawa M, Yu R, Abe K, Rodwell M J W and Franklin J 1991 IEEE Microw. Guided Wave Lett. 1 28
[8] Rodwell M J W, Kamegawa M, Yu R, Case M, Carman E and Giboney K S 1991 IEEE Trans. Microw. Theory Tech. 39 1194
[9] Fernandez M, Delos E, Melique X, Arscott S and Lippens D 2001 IEEE Trans. Microw. Wireless Compon. Lett. 11 498
[10] Chen S W, Ho C T, Pande K and Rice P D 1993 IEEE Trans. Microw. Theory Tech. 41 2317
[11] Qun X 2005 Millimeter and Sub-Millimeter Wave Heterostructure Barrier Varactor Frequency Multipliers Ph. D. dissertation (Virginia: University of Virginia)
[12] Dragoman M, Szentpali B, Muller A, Somogyi K, Craciunoiu F, Riesz F, Iordanescu S, Varga S and Simion S 1994 Proceedings of 7th Mediterranean Electrotechnical Conference, Antalya, Turkey, April 12-14, 1994 p. 617
[13] Rodwell M J W, Allen S T, Yu R Y, Case M G, Bhattacharya U R, Carman M, Kamegawa E, Konishi M, Pusl Y and Pullela R 1994 Proc. IEEE 82 1037
[14] Li M, Kathiravan K and Robert G H 1998 IEEE Trans. Microw. Theory Tech. 46 2295
[15] Li H Y, Zhang Y W, Zhang L W, He L, Li H Q and Chen H 2007 J. Appl. Phys. 102 033711
[16] Huang J, Yang H, Tian C, Dong J R, Zhang H Y and Guo T Y 2010 Chin. Phys. B 19 127203
[17] Hongjoon Kim, Alexander B K, Abdolreza K and Daniel W V D W 2007 IEEE Trans. Microw. Theory Tech. 55 571
[1] Spectral shift of solid high-order harmonics from different channels in a combined laser field
Dong-Dong Cao(曹冬冬), Xue-Fei Pan(潘雪飞), Jun Zhang(张军), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2023, 32(3): 034204.
[2] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[3] Effect of laser focus in two-color synthesized waveform on generation of soft x-ray high harmonics
Yanbo Chen(陈炎波), Baochang Li(李保昌), Xuhong Li(李胥红), Xiangyu Tang(唐翔宇), Chi Zhang(张弛), and Cheng Jin(金成). Chin. Phys. B, 2023, 32(1): 014203.
[4] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[5] Second harmonic generation from precise diamond blade diced ridge waveguides
Hui Xu(徐慧), Ziqi Li(李子琦), Chi Pang(逄驰), Rang Li(李让), Genglin Li(李庚霖), Sh. Akhmadaliev, Shengqiang Zhou(周生强), Qingming Lu(路庆明), Yuechen Jia(贾曰辰), and Feng Chen(陈峰). Chin. Phys. B, 2022, 31(9): 094209.
[6] Probing subcycle spectral structures and dynamics of high-order harmonic generation in crystals
Long Lin(林龙), Tong-Gang Jia(贾铜钢), Zhi-Bin Wang(王志斌), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2022, 31(9): 093202.
[7] Optical second-harmonic generation of Janus MoSSe monolayer
Ce Bian(边策), Jianwei Shi(史建伟), Xinfeng Liu(刘新风), Yang Yang(杨洋), Haitao Yang(杨海涛), and Hongjun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097304.
[8] Photon-interactions with perovskite oxides
Hongbao Yao(姚洪宝), Er-Jia Guo(郭尔佳), Chen Ge(葛琛), Can Wang(王灿), Guozhen Yang(杨国桢), and Kuijuan Jin(金奎娟). Chin. Phys. B, 2022, 31(8): 088106.
[9] Tunable spectral shift of high-order harmonic generation in atoms using a sinusoidally phase-modulated pulse
Yue Qiao(乔月), Jun Wang(王俊), Yan Yan(闫妍), Simeng Song(宋思蒙), Zhou Chen(陈洲), Aihua Liu(刘爱华), Jigen Chen(陈基根), Fuming Guo(郭福明), and Yujun Yang(杨玉军). Chin. Phys. B, 2022, 31(6): 064214.
[10] Enhancement of isolated attosecond pulse generation by using long gas medium
Yueying Liang(梁玥瑛), Xinkui He(贺新奎), Kun Zhao(赵昆), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2022, 31(4): 043302.
[11] Orientation and ellipticity dependence of high-order harmonic generation in nanowires
Fan Yang(杨帆), Yinghui Zheng(郑颖辉), Luyao Zhang(张路遥), Xiaochun Ge(葛晓春), and Zhinan Zeng(曾志男). Chin. Phys. B, 2022, 31(4): 044204.
[12] Decoding the electron dynamics in high-order harmonic generation from asymmetric molecular ions in elliptically polarized laser fields
Cai-Ping Zhang(张彩萍) and Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2022, 31(4): 043301.
[13] Generation of elliptical isolated attosecond pulse from oriented H2+ in a linearly polarized laser field
Yun-He Xing(邢云鹤), Jun Zhang(张军), Xiao-Xin Huo(霍晓鑫), Qing-Yun Xu(徐清芸), and Xue-Shen Liu(刘学深). Chin. Phys. B, 2022, 31(4): 043203.
[14] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[15] Attosecond spectroscopy for filming the ultrafast movies of atoms, molecules and solids
Lixin He(何立新), Xiaosong Zhu(祝晓松), Wei Cao(曹伟), Pengfei Lan(兰鹏飞), and Peixiang Lu(陆培祥). Chin. Phys. B, 2022, 31(12): 123301.
No Suggested Reading articles found!