Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 060701    DOI: 10.1088/1674-1056/20/6/060701
GENERAL Prev   Next  

Fabrication and electromagnetic wave absorption properties of amorphous Ni–P nanotubes

Lu Hai-Peng(陆海鹏), Han Man-Gui(韩满贵), Cai Li(蔡黎), and Deng Long-Jiang(邓龙江)
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  Amorphous Ni-P nanotubes are fabricated through electroless chemical deposition inside an anodic aluminum oxide template. The hysteresis loops of Ni-P nanotube arrays are each found to exhibit an unusual isotropic behaviour, which is believed to be due to the competition results between the shape anisotropy and the magnetostatic interaction among nanotubes. The dynamic dependence of permittivity on the frequency spectrum is fitted to the Lorentzian-type dispersion law. The permeability dispersion behaviours have been fitted based on the Kittel equation. Electromagnetic wave absorption properties of Ni-P nanotubes/paraffin composites with different values of thickness (t) are clearly shown by a three-dimensional graph. Furthermore, the bandwidths of composites with different “t ”values can be well presented by a two-dimensional contour graph, which is a novel presentation form. The results show that the composites each have a good microwave absorption performance with t larger than 5.5 mm and with the frequency around 8 gigahertz.
Keywords:  magnetic permeability      permittivity      microwave absorber      magnetic nanotubes  
Received:  03 September 2010      Revised:  07 December 2010      Accepted manuscript online: 
PACS:  07.55.-w (Magnetic instruments and components)  
  77.22.Ch (Permittivity (dielectric function))  
  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
  85.35.Kt (Nanotube devices)  
Fund: Project supported by the National Natural Science Foundation of China (NSFC) (Grant No. 60701016), NSFC{Royal Society of UK International Jointed Program (Grant No. 60911130130), the Fundamental Research Funds for the Central Universities, China (Grant No. ZYGX2009J036), and the Prior Research of the State Key Development Program for Basic Research of China (Grant No. 2010CB334702).

Cite this article: 

Lu Hai-Peng(陆海鹏), Han Man-Gui(韩满贵), Cai Li(蔡黎), and Deng Long-Jiang(邓龙江) Fabrication and electromagnetic wave absorption properties of amorphous Ni–P nanotubes 2011 Chin. Phys. B 20 060701

[1] Gasparac R, Kohli P, Mota M O, Trofin L and Martin C R 2004 Nano Lett. 4 513
[2] Haberzettl C A 2002 Nanotechnology 13 R9
[3] Khizroev S, Kryder M H, Litvinov D and Thompson D A 2002 Appl. Phys. Lett. 81 2256
[4] Sui Y C, Skomski R, Sorge K D and Sellmyer D J 2004 J. Appl. Phys. 95 7151
[5] Escrig J, Daub M, Landeros P, Nielsch K and Altbir D 2007 Nanotechnology 18 445706
[6] Escrig J, Bachmann J, Jing J, Daub M, Altbir D and Nielsch K 2008 Phys. Rev. B 77 214421
[7] Wang S, Yu G J, Gong J L, Li Q T, Xu H J, Zhu D Z and Zhu Z Y 2006 Nanotechnology 17 1594
[8] Banerjee I A, Yu L, Shima M, Yoshino T, Takeyama H, Matsunaga T and Matsui H 2005 Adv. Mater. 17 1128
[9] Tao F, Guan M, Jiang Y, Zhu J, Xu Z and Xue Z 2006 Adv. Mater. 18 2161
[10] Bao J, Tie C, Xu Z, Zhou Q, Shen D and Ma Q 2001 Adv. Mater. 13 1631
[11] Wang X W, Yuan Z H, Sun S Q, Duan Y Q and Bie L J 2008 Mater. Chem. Phys. 112 329
[12] Ren X, Jiang C H, Huang X M and Li D D 2009 Physica E 41 349
[13] Li D D, Thompson R S, Bergmann G and Lu J G 2008 Adv. Mater. 20 4575
[14] Bao J, Tie C, Xu Z, Zhou Q, Shen D and Ma Q 2001 Adv. Mater. 13 1631
[15] Ren X, Jiang C H, Huang X M and Li D D 2009 Physica E 41 349
[16] Zhang J, Jones G A, Shen T H, Donnelly S E and Li G 2007 J. Appl. Phys. 101 054310
[17] Encinas-Oropesa A, Demand M, Piraux L, Huynen I and Ebels U 2001 Phys. Rev. B 63 104415
[18] Jonscher A K 2008 Dielectric Relaxation in Solids (Xián: Xián Jiaotong University Press) p. 96
[19] Cole K S and Cole R H 1941 J. Chem. Phys. 9 341
[20] Dragoman D and Dragoman M 2006 J. Appl. Phys. 99 076106
[21] Han M G, Ou Y, Liang D F and Deng L J 2009 Chin. Phys. B 18 1261
[22] Wu M Z, Zhang Y D, Hui S, Xiao T D, Ge S H, Hines W A, Budnick J I and Tayor G W 2002 Appl. Phys. Lett. 80 4404
[23] Li Z W, Lin G Q, Chen L F, Wu Y P and Ong C K 2005 J. Appl. Phys. 98 094310
[24] Kou X, Fan X, Zhu H and Xiao J Q 2009 Appl. Phys. Lett. 94 112509
[25] Liu R, Wang J, Liu Q, Wang H and Jiang C 2008 J. Appl. Phys. 103 013910
[26] Gérardin O, Le Gall H, Donahue M J and Vukadinovic N 2001 J. Appl. Phys. 89 7012
[27] Chen W B, Han M G, Zhou H, Ou Y and Deng L J 2010 Chin. Phys. B 19 087502.
[28] Naito Y and Suetake K, 1971 IEEE Trans. Microwave Theory Technol. 19 65
[29] Tsay C Y, Yang R B, Hung D S, Hung Y H, Yao Y D and Lin C K 2010 J. Appl. Phys. 107 09A502
[1] Microstructural, magnetic and dielectric performance of rare earth ion (Sm3+)-doped MgCd ferrites
Dandan Wen(文丹丹), Xia Chen(陈霞), Dasen Luo(骆大森), Yi Lu(卢毅),Yixin Chen(陈一鑫), Renpu Li(黎人溥), and Wei Cui(崔巍). Chin. Phys. B, 2022, 31(7): 078503.
[2] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[3] Comprehensive studies on dielectric properties of p-methoxy benzylidene p-decyl aniline with function of temperature and frequency in planar geometry: A potential nematic liquid crystal for display devices
Pankaj Kumar Tripathi, Kunwar Vikram, Mithlesh Tiwari, and Ajay Shriram. Chin. Phys. B, 2021, 30(6): 064208.
[4] A novel high breakdown voltage and high switching speed GaN HEMT with p-GaN gate and hybrid AlGaN buffer layer for power electronics applications
Yong Liu(刘勇), Qi Yu(于奇), and Jiang-Feng Du(杜江锋). Chin. Phys. B, 2020, 29(12): 127701.
[5] Microfluidic temperature sensor based on temperature-dependent dielectric property of liquid
Qi Liu(刘琦), Yu-Feng Yu(俞钰峰), Wen-Sheng Zhao(赵文生), Hui Li(李慧). Chin. Phys. B, 2020, 29(1): 010701.
[6] The c-axis complex permittivity and electrical impedance in BaFe2As2:Experimental examination on transformation validity
Yongqiang Li(李永强), Xinzhe Du(杜新哲), Dongliang Gong(龚冬良), Qirui Yang(杨綦睿), Wenliang Zhang(张汶良), Tao Xie(谢涛), Bo Feng(冯波), Kai Chen(陈恺), Huiqian Luo(罗会仟), Junming Liu(刘俊明), Jinsong Zhu(朱劲松). Chin. Phys. B, 2019, 28(5): 057702.
[7] Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles
Geeta Yadav, Govind Pathak, Kaushlendra Agrahari, Mahendra Kumar, Mohd Sajid Khan, V S Chandel, Rajiv Manohar. Chin. Phys. B, 2019, 28(3): 034209.
[8] Domain wall dynamics in magnetic nanotubes driven by an external magnetic field
Zai-Dong Li(李再东), Yue-Chuan Hu(胡月川), Peng-Bin He(贺鹏斌), Lin-Lin Sun(孙琳琳). Chin. Phys. B, 2018, 27(7): 077505.
[9] Lattice dynamics properties of chalcopyrite ZnSnP2: Density-functional calculations by using a linear response theory
You Yu(虞游), Yu-Jing Dong(董玉静), Yan-Hong Shen(沈艳红), Guo-Dong Zhao(赵国栋), Xiao-Lin Zheng(郑小林), Jia-Nan Sheng(盛佳南). Chin. Phys. B, 2017, 26(4): 046302.
[10] Study on the dielectric properties of Mg-doped NaBiTi6O14 ceramics
Yong Chen(陈勇), Simin Xue(薛思敏), Qian Luo(骆迁), Huyin Su(苏虎音), Qi Chen(陈琪), Zhen Huang(黄镇), Linfang Xu(徐玲芳), Wanqiang Cao(曹万强), Zhaoxiang Huang(黄兆祥). Chin. Phys. B, 2017, 26(4): 047701.
[11] Field-induced phase transitions in chiral smectic liquid crystals studied by the constant current method
H Dhaouadi, R Zgueb, O Riahi, F Trabelsi, T Othman. Chin. Phys. B, 2016, 25(5): 057704.
[12] Theoretical calculation and experiment of microwave electromagnetic property of Ni(C) nanocapsules
Dan-Feng Zhang(张丹枫), Zhi-Feng Hao(郝志峰), Bi Zeng(曾碧), Yan-Nan Qian(钱艳楠), Ying-Xin Huang(黄颖欣), Zhen-Da Yang(杨振大). Chin. Phys. B, 2016, 25(4): 040201.
[13] Preparation and characterization of Sr0.5Ba0.5Nb2O6 glass-ceramic on piezoelectric properties
Shan Jiang(姜珊), Xuan-Ming Wang(王炫明), Jia-Yu Li(李佳宇),Yong Zhang(张勇), Tao Zheng(郑涛), Jing-Wen Lv(吕景文). Chin. Phys. B, 2016, 25(3): 037701.
[14] Novel attributes and design considerations of effective oxide thickness in nano DG MOSFETs
Morteza Charmi. Chin. Phys. B, 2015, 24(4): 047302.
[15] Tunable wideband absorber based on resistively loaded lossy high-impedance surface
Dang Ke-Zheng (党可征), Shi Jia-Ming (时家明), Wang Jia-Chun (汪家春), Lin Zhi-Dan (林志丹), Wang Qi-Chao (王启超). Chin. Phys. B, 2015, 24(10): 104104.
No Suggested Reading articles found!