Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 060304    DOI: 10.1088/1674-1056/20/6/060304
GENERAL Prev   Next  

Non-Markovian dynamics of a qubit in a reservoir: different solutions of non-Markovian master equation

Ding Bang-Fu (丁邦福), Wang Xiao-Yun (王小云), Tang Yan-Fang (唐艳芳), Mi Xian-Wu (米贤武), Zhao He-Ping (赵鹤平)
College of Physical Science and Information Engineering, Jishou University, Jishou 416000, China
Abstract  We present a non-Markovian master equation for a qubit interacting with a general reservoir, which is derived according to the Nakajima-Zwanzig and the time convolutionless projection operator technique. The non-Markovian solutions and Markovian solution of dynamical decay of a qubit are compared. The results indicate the validity of non-Markovian approach in different coupling regimes and also show that the Markovian master equation may not precisely describe the dynamics of an open quantum system in some situation. The non-Markovian solutions may be effective for many qubits independently interacting with the heated reservoirs.
Keywords:  Nakajima-Zwanzig and time convolutionless projection operator technique      non-Markovian solutions      Markovian solutions      correlation function      qubit  
Received:  21 October 2010      Revised:  12 February 2011      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  42.50.Lc (Quantum fluctuations, quantum noise, and quantum jumps)  
Fund: Project supported by the Natural Science Foundation of Hunan Province of China (Grant No. 09JJ6011) and the Natural Science Foundation of the Education Department of Hunan Province of China (Grant Nos. 06C652 and 07C528).

Cite this article: 

Ding Bang-Fu (丁邦福), Wang Xiao-Yun (王小云), Tang Yan-Fang (唐艳芳), Mi Xian-Wu (米贤武), Zhao He-Ping (赵鹤平) Non-Markovian dynamics of a qubit in a reservoir: different solutions of non-Markovian master equation 2011 Chin. Phys. B 20 060304

[1] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[2] Weiss U 1999 Quantum Disspative Systems (Singapore: World Scientific)
[3] Alicki R and Lendi K 2007 Quantum Dynamical Semigroups and Application (Berlin: Springer)
[4] Breuer H P, Laine E M and Piilo J 2009 Phys. Rev. Lett 103 210401
[5] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[6] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[7] Gorini V, Kossakowski A and Sudarshan E C G 1976 J. Math. Phys. 17 821
[8] Lindblad G 1976 Comm. Math. Phys. 48 119
[9] Scala M, Militello B, Messina A, Pillo J and Maniscalco S 2007 Phys. Rev. A 75 013811
[10] Wilczewski M and Czachor M 2009 Phys. Rev. A 79 033836
[11] Breuer H P 2007 Phys. Rev. A 75 022103
[12] Breuer H P and Vacchini B 2008 Phys. Rev. Lett. 101 140402
[13] Breuer H P and Vacchini B 2009 Phys. Rev. E 79 041147
[14] Budini A A 2005 Phys. Rev. E 72 056106
[15] Budini A A 2006 Phys. Rev. A 74 053815
[16] Budini A A and Schomerus H 2005 J. Phys. A: Math. Gen. 38 9251
[17] Vacchini B 2008 Phys. Rev. A 78 022112
[18] Piilo J, Maniscalco S, Harkonen K and Suominen K A 2008 it Phys. Rev. Lett. 100 180402
[19] Krovi H, Oreshkov O, Ryazanov M and Lidar D A 2007 Phys. Rev. A 76 052117
[20] Kossakowski A and Rebolledo R 2009 Open Syst. Inf. Dyn. 16 259
[21] Kossakowski A and Rebolledo R 2008 Open Syst. Inf. Dyn. 15 135
[22] Ferraro E, Breuer H P, Napoli A, Jivulescu M A and Messina A 2008 Phys. Rev. B 78 064309
[23] Chruscinski D, Kossakowski A and Pascazio S 2010 Phys. Rev. A 81 032101
[24] Chruscinski D and Kossakowski A 2010 Phys. Rev. Lett. 104 070406
[25] Wang F Q, Zhang Z M and Liang R S 2009 Chin. Phys. B 18 1674
[26] Vacchini B and Breuer H P 2010 Phys. Rev. A 81 042103
[27] Haikka P and Maniscalco S 2009 Phys. Rev. A 81 052103
[28] Maniscasco S and Patruccione F 2006 Phys. Rev. A 73 012111
[29] Smirne A and Vacchini B 2010 Phys. Rev. A 82 022110
[30] Weisskopf V and Winger E 1930 Z. Phys. 63 54
[31] Ferraro E, Scala M, Miqliore R and Napoli A 2009 Phys. Rev. A 80 042112
[1] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[2] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[3] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[4] Quantum private comparison of arbitrary single qubit states based on swap test
Xi Huang(黄曦), Yan Chang(昌燕), Wen Cheng(程稳), Min Hou(侯敏), and Shi-Bin Zhang(张仕斌). Chin. Phys. B, 2022, 31(4): 040303.
[5] Deterministic remote state preparation of arbitrary three-qubit state through noisy cluster-GHZ channel
Zhihang Xu(许智航), Yuzhen Wei(魏玉震), Cong Jiang(江聪), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(4): 040304.
[6] Measuring Loschmidt echo via Floquet engineering in superconducting circuits
Shou-Kuan Zhao(赵寿宽), Zi-Yong Ge(葛自勇), Zhong-Cheng Xiang(相忠诚), Guang-Ming Xue(薛光明), Hai-Sheng Yan(严海生), Zi-Ting Wang(王子婷), Zhan Wang(王战), Hui-Kai Xu(徐晖凯), Fei-Fan Su(宿非凡), Zhao-Hua Yang(杨钊华), He Zhang(张贺), Yu-Ran Zhang(张煜然), Xue-Yi Guo(郭学仪), Kai Xu(许凯), Ye Tian(田野), Hai-Feng Yu(于海峰), Dong-Ning Zheng(郑东宁), Heng Fan(范桁), and Shi-Ping Zhao(赵士平). Chin. Phys. B, 2022, 31(3): 030307.
[7] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
[8] Identification of the phosphorus-doping defect in MgS as a potential qubit
Jijun Huang(黄及军) and Xueling Lei(雷雪玲). Chin. Phys. B, 2022, 31(10): 106102.
[9] Semi-quantum private comparison protocol of size relation with d-dimensional GHZ states
Bing Wang(王冰), San-Qiu Liu(刘三秋), and Li-Hua Gong(龚黎华). Chin. Phys. B, 2022, 31(1): 010302.
[10] Quantum computation and simulation with superconducting qubits
Kaiyong He(何楷泳), Xiao Geng(耿霄), Rutian Huang(黄汝田), Jianshe Liu(刘建设), and Wei Chen(陈炜). Chin. Phys. B, 2021, 30(8): 080304.
[11] Shortcut-based quantum gates on superconducting qubits in circuit QED
Zheng-Yin Zhao(赵正印), Run-Ying Yan(闫润瑛), and Zhi-Bo Feng(冯志波). Chin. Phys. B, 2021, 30(8): 088501.
[12] Universal quantum control based on parametric modulation in superconducting circuits
Dan-Yu Li(李丹宇), Ji Chu(储继), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Shao-Xiong Li(李邵雄), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(7): 070308.
[13] Fabrication of microresonators by using photoresist developer as etchant
Shu-Qing Song(宋树清), Jian-Wen Xu(徐建文), Zhi-Kun Han(韩志坤), Xiao-Pei Yang(杨晓沛), Yu-Ting Sun(孙宇霆), Xiao-Han Wang(王晓晗), Shao-Xiong Li(李邵雄), Dong Lan(兰栋), Jie Zhao(赵杰), Xin-Sheng Tan(谭新生), and Yang Yu(于扬). Chin. Phys. B, 2021, 30(6): 060313.
[14] Equilibrium dynamics of the sub-ohmic spin-boson model at finite temperature
Ke Yang(杨珂) and Ning-Hua Tong(同宁华). Chin. Phys. B, 2021, 30(4): 040501.
[15] Phase-sensitive Landau-Zener-Stückelberg interference in superconducting quantum circuit
Zhi-Xuan Yang(杨智璇), Yi-Meng Zhang(张一萌), Yu-Xuan Zhou(周宇轩), Li-Bo Zhang(张礼博), Fei Yan(燕飞), Song Liu(刘松), Yuan Xu(徐源), and Jian Li(李剑). Chin. Phys. B, 2021, 30(2): 024212.
No Suggested Reading articles found!