Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(6): 060201    DOI: 10.1088/1674-1056/20/6/060201
GENERAL   Next  

Bandgap characteristics of 2D plasma photonic crystal with oblique incidence:TM case

Xie Ying-Tao (谢应涛)a, Yang Li-Xia (杨利霞)ab
a Department of Communication Engnerring, Jiangsu University, Zhenjiang 212013, China; b State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
Abstract  A novel periodic boundary condition (PBC), that is the constant transverse wavenumber (CTW) method, is introduced to solve the time delay in the transverse plane with oblique incidence. Based on the novel PBC, the FDTD/PBC algorithm is proposed to study periodic structure consisting of plasma and vacuum. Then the reflection coefficient for the plasma slab from the FDTD/PBC algorithm is compared with the analytic results to show the validity of our technique. Finally, the reflection coefficients for the plasma photonic crystals are calculated using the FDTD/PBC algorithm to study the variation of bandgap characteristics with the incident angle and the plasma parameters. Thus it has provided the guiding sense for the actual manufacturing plasma photonic crystal.
Keywords:  finite-difference time-domain method      photonic crystal      plasma      periodic boundary condition  
Received:  20 October 2010      Revised:  23 February 2011      Accepted manuscript online: 
PACS:  02.70.-c (Computational techniques; simulations)  
  95.75.Pq (Mathematical procedures and computer techniques)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61072002), the Ph. D. Program Foundation of the Ministry of Education of China (Grant No. 20093227120018), the Science and Techniques Planning Project of Jiangsu Province of China (Grant No. BE2008107), the Opening Funding of the State Key Laboratory of Millimeter Waves (Grant No. K200910), the Advanced Professional Scientific Research Foundation of Jiangsu University (Grant No. 07JDG063), and the 9th Undergraduate Research Foundation of Jiangsu University (Grant No. 09A044).

Cite this article: 

Xie Ying-Tao (谢应涛), Yang Li-Xia (杨利霞) Bandgap characteristics of 2D plasma photonic crystal with oblique incidence:TM case 2011 Chin. Phys. B 20 060201

[1] Taflove A and Hagness S C 2005Computational Electrodynamics: The Finite-difference Time-domain Method 3rd edn. (Boston: Artech House)
[2] Tsay W J and Pozar D M 1993 IEEE Microwave and Guided Wave Letters 3 250
[3] Harms P, Mittra R and Wai K O 1994IEEE Trans. Antennas Propag. 42 1317
[4] Roden J A, Gedney S D, Kesler M P, Maloney J G and Harms P H 1998IEEE Transactions on Microwave Theory and Techniques 46 420
[5] Yang F, Chen J, Rui Q and Elsherbeni A 2007Radio Sci. 42 RS4004
[6] Aminian A and Rahmat-Samii Y 2006IEEE Trans. Antennas Propag. 54 1818
[7] Lee J H and Kalluri D K 1999IEEE Trans. Antennas Propag. 47 1146
[8] Yang L X, Xie Y T, Wang Y J and Wang G 2009High Power Laser and Particle Beams 21 1710 (in Chinese)
[9] Yang L X, Wang Y J and Wang G 2009Acta Electron. Sin. 37 2711 (in Chinese)
[10] Yang L, Xie Y, Yu P and Wang G 2010Progress in Electromagnetics Research M 12 39
[11] Liu S B, Gu C Q and Zhou J J 2006Acta Phys. Sin. 55 1283 (in Chinese)
[12] Qi L M, Yang Z Q, Lan F, Gao X, Shi Z J and Liang Z 2010Acta Phys. Sin. 59 351 (in Chinese)
[13] Zhang H F, Ma L and Liu S B 2009Acta Phys. Sin. 58 1071 (in Chinese)
[14] Ma L, Zhang H F and Liu S B 2009Acta Phys. Sin. 57 5089 (in Chinese)
[15] Yang L X, Xie Y T, Kong W, Yu P P and Wang G 2010Acta Phys. Sin. 59 6089 (in Chinese)
[16] Brillouin L 2003Wave Propagation in Periodic Structures 2nd edn. (New York: Dover Publications)
[17] Ginzburg V L 1970Propagation of Electromagnetic Waves in Plasma (New York: Pergamon Press)
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[4] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[5] Ignition dynamics of radio frequency discharge in atmospheric pressure cascade glow discharge
Ya-Rong Zhang(张亚容), Qian-Han Han(韩乾翰), Jun-Lin Fang(方骏林), Ying Guo(郭颖), and Jian-Jun Shi(石建军). Chin. Phys. B, 2023, 32(2): 025201.
[6] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[7] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[8] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[9] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[10] Fundamental study towards a better understanding of low pressure radio-frequency plasmas for industrial applications
Yong-Xin Liu(刘永新), Quan-Zhi Zhang(张权治), Kai Zhao(赵凯), Yu-Ru Zhang(张钰如), Fei Gao(高飞),Yuan-Hong Song(宋远红), and You-Nian Wang(王友年). Chin. Phys. B, 2022, 31(8): 085202.
[11] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[12] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[13] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[14] Interaction between plasma and electromagnetic field in ion source of 10 cm ECR ion thruster
Hao Mou(牟浩), Yi-Zhou Jin(金逸舟), Juan Yang(杨涓), Xu Xia(夏旭), and Yu-Liang Fu(付瑜亮). Chin. Phys. B, 2022, 31(7): 075202.
[15] Plasma-wave interaction in helicon plasmas near the lower hybrid frequency
Yide Zhao(赵以德), Jinwei Bai(白进纬), Yong Cao(曹勇), Siyu Wu(吴思宇), Eduardo Ahedo, Mario Merino, and Bin Tian(田滨). Chin. Phys. B, 2022, 31(7): 075203.
No Suggested Reading articles found!