Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(5): 056101    DOI: 10.1088/1674-1056/20/5/056101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Unidirectional expansion of lattice parameters in GaN induced by ion implantation

Fa Tao (法涛), Li Lin (李琳), Yao Shu-De (姚淑德), Wu Ming-Fang (吴名枋), Zhou Sheng-Qiang (周生强)
State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China
Abstract  This paper reports that the 150-keV Mn ions are implanted into GaN thin film grown on Al2O3 by metal–organic chemical vapour deposition. The X-ray diffraction reciprocal spacing mapping is applied to study the lattice parameter variation upon implantation and post-annealing. After implantation, a significant expansion is observed in the perpendicular direction. The lattice strain in perpendicular direction strongly depends on ion fluence and implantation geometry and can be partially relaxed by post-annealing. While in the parallel direction, the lattice parameter approximately keeps the same as the unimplanted GaN, which is independent of ion fluence, implantation geometry and post-annealing temperature.
Keywords:  GaN      ion implantation      unidirectional strain      X-ray reciprocal space mapping  
Received:  24 October 2010      Revised:  16 December 2010      Accepted manuscript online: 
PACS:  61.05.cp (X-ray diffraction)  
  61.80.Jh (Ion radiation effects)  
  61.72.uj (III-V and II-VI semiconductors)  
  82.80.Yc (Rutherford backscattering (RBS), and other methods ofchemical analysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11005005), the National Basic Research Program of China (Grant No. 2010CB832904), and the Bilateral Cooperation between China and Flanders (Grant No. BIL 02-02).

Cite this article: 

Fa Tao (法涛), Li Lin (李琳), Yao Shu-De (姚淑德), Wu Ming-Fang (吴名枋), Zhou Sheng-Qiang (周生强) Unidirectional expansion of lattice parameters in GaN induced by ion implantation 2011 Chin. Phys. B 20 056101

[1] Kucheyev S O, Williams J S and Pearton S J 2001 Mat. Sci. Eng. R 33 51
[2] Ronning C, Carlson E P and Davis R F 2001 Physics Reports 351 349
[3] Zhang B, Shi L Q, Chen C C and Zhao D G 2006 Nucl. Instrum. Meth. B 252 225
[4] Sun L L, Yan F W, Wang J X, Zhang H X, Zeng Y P, Wang G H and Li J M 2009 Materials Letters 63 451
[5] Zhang B, Chen C C, Yang C, Wang J Z, Shi L Q, Cheng H S and Zhao D G 2010 Nucl. Instrum. Meth. B 268 123
[6] Pearton S J, Abernathy C R, Norton D P, Hebard A F, Park Y D, Boatner L A and Budai L A 2003 Mat. Sci. Eng. R 40 137
[7] Sun L L, Yan F W, Zhang H X, Wang J X, Zeng Y P, Wang G H and Li J M 2009 Materials Science and Engineering: B 162 209
[8] Sun L L, Yan F W, Zhang H X, Wang J X, Wang G H, Zeng Y P and Li J M 2009 Appl. Surf. Sci. 255 7451
[9] Tan H H, Williams J S, Zou J, Cockayne D J H, Pearton S J and Stall R A 1996 Appl. Phys. Lett. 69 2364
[10] Liu C, Mensching B, Zeitler M, Volz K and Rauschenbach B 1998 Phys. Rev. B 57 2530
[11] Kucheyev S O, Williams J S, Jagadish C, Zou J, Li J and Titov A I 2001 Phys. Rev. B 64 035202
[12] Tan H H, Williams J S, Zou J, Cockayne D J H, Pearton S J, Zolper J C and Stall R A 1998 Appl. Phys. Lett. 72 1190
[13] Chami A C, Ligeon E, Danielou R, Fontenille J and Eymery R 1987 J. Appl. Phys. 61 161
[14] Paine B M and Speriosu V S 1987 J. Appl. Phys. 62 1704
[15] Bai G and Nicolet M A 1991 J. Appl. Phys. 70 649
[16] Liu C, Mensching B, Volz K and Rauschenbach B 1997 Appl. Phys. Lett. 71 2313.
[17] Ronning C, Linthicum K J, Carlson E P, Hartlieb P J, Thomson D B, Gehrke T and Davis R F 1999 MRS Internet J. Nitride Semicond. Res. 4S1 G3.17
[18] Vantomme A, Hogg S M, Wu M F, Pipeleers B, Swart M, Goodman S, Auret D, Lakoubovskii K, Adriaenssens G J, Jacobs K and Moerman I 2001 Nucl. Instr. and Meth. B 175--177 148
[19] Pong B J, Pan C J, Teng Y C, Chi G C, Li W H, Lee K C and Lee C H 1998 J. Appl. Phys. 83 5992
[20] Pereira S, Correia M R, Pereira E, O'Donnell K P, Alves E, Sequeira A D, Franco N, Watson I M and Deatcher C J 2002 Appl. Phys. Lett. 80 3913
[21] Fewster P F 1997 Crit. Rev. Solid State Mater. Sci. 22 69
[22] Koppensteiner E, Bauer G, Kibbel H and Kasper E 1994 J. Appl. Phys. 76 3489
[23] Krost A, Bl"asing J, L"unenb"urger M, Protzmann H and Heuken M 1999 Appl. Phys. Lett. 75 689
[24] Zhou S Q, Wu M F, Yao S D and Zhang G Y 2005 Chin. Phys. Lett. 22 2700 endfootnotesize
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[3] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[4] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[5] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[6] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[7] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[8] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[9] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[10] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[11] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[12] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[13] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[14] Effects of electrical stress on the characteristics and defect behaviors in GaN-based near-ultraviolet light emitting diodes
Ying-Zhe Wang(王颖哲), Mao-Sen Wang(王茂森), Ning Hua(化宁), Kai Chen(陈凯), Zhi-Min He(何志敏), Xue-Feng Zheng(郑雪峰), Pei-Xian Li(李培咸), Xiao-Hua Ma(马晓华), Li-Xin Guo(郭立新), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068101.
[15] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
No Suggested Reading articles found!