Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(5): 050314    DOI: 10.1088/1674-1056/20/5/050314
GENERAL Prev   Next  

Generation of Wn state with three atoms trapped in two remote cavities coupled by an optical fibre

Li Yan-Ling(李艳玲)a)† and Fang Mao-Fa(方卯发)b)
a School of Information Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China; b College of Physics and Information Science, Hunan Normal University, Changsha 410081, China
Abstract  We propose two schemes for the generation of the Wn state with three atoms separately trapped in two distant cavities coupled by an optical fibre. One is implemented by controlling the interaction time, the other is implemented via the adiabatic passage. The influence of various decoherence processes, such as spontaneous emission of the atoms and photon leakages of the cavities and the optical fibre, on the fidelity is also investigated. It is found that the Wn state can be generated with high fidelity even when these decoherence processes are present.
Keywords:  Wn state      adiabatic passage      optical fibre  
Received:  05 December 2010      Revised:  06 January 2011      Accepted manuscript online: 
PACS:  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  
  42.81.Qb (Fiber waveguides, couplers, and arrays)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074072).

Cite this article: 

Li Yan-Ling(李艳玲) and Fang Mao-Fa(方卯发) Generation of Wn state with three atoms trapped in two remote cavities coupled by an optical fibre 2011 Chin. Phys. B 20 050314

[1] Boca A, Miller R, Birnbaum K M, Boozer A D, McKeever J and Kimble H J 2004 emphPhys. Rev. Lett. 93 233603
[2] Trupke M, Hinds E A, Eriksson S, Curtis E A, Moktadir Z, Kukharenka E and Kraft M 2005 emphAppl. Phys. Lett. 87 211106
[3] Peng P and Li F L 2007 emphPhys. Rev. A 75 062320
[4] Chen L B, Ye M Y, Lin G W, Du Q H and Lin X M 2007 emphPhys. Rev. A 76 062304
[5] Song J, Xia Y and Song H S 2007 emphJ. Phys. B: At. Mod. Opt. Phys. 40 4503
[6] Zheng S B 2010 emphChin. Phys. B 19 064204
[7] Lü X Y, Liu J B, Ding C L and Li J H 2008 emphPhys. Rev. A 78 032305
[8] Ye S Y, Zhong Z R and Zheng S B 2008 emphPhys. Rev. A 77 014303
[9] Lü X Y, Si L G, Hao X Y and Yang X X 2009 emphPhys. Rev. A 79 052330
[10] Zheng S B 2009 emphEur. Phys. J. D 54 719
[11] Dür W, Vidal G and Cirac J I 2000 emphPhys. Rev. A 62 062314
[12] Karlsson A and Bourennane M 1998 emphPhys. Rev. A 58 4394
[13] Agrawal P and Pati A 2006 emphPhys. Rev. A 74 062320
[14] Jung E, Hwang M R, Ju Y H, Kim M S, Yoo S K, Kim K and Park D 2008 emphPhys. Rev. A 78 012312
[15] Li Y L, Fang M F, Xiao X, Wu C and Hou L Z 2010 emphChin. Phys. B 19 060306
[16] Pellizzari T 1997 emphPhys. Rev. Lett. 79 5242
[17] Serafini A, Mancini S and Bose S 2006 emphPhys. Rev. Lett. 96 010503
[18] Zheng S B 2009 emphAppl. Phys. Lett. 94 154101
[19] Zhou Y L, Wang Y M, Liang L M and Li C Z 2009 emphPhys. Rev. A 79 044304
[20] Yang Z B, Wu H Z, Su W J and Zheng S B 2009 emphPhys. Rev. A 80 012305
[21] Scully M O and Zubairy M S 1997 emphQuantum Optics (Cambridge: Cambridge University Press) pp. 248--255
[22] Breuer H P and Petruccione F 2002 emphThe Theory of Open Quantum Systems (Oxford: Oxford University Press) pp. 110--160
[23] Ma R, Schliesser A, Del'Haye P, Dabirian A, Anetsberger G and Kippenberg J 2007 emphOpt. Lett. 32 2200
[24] P"ollinger M, Kippenberg J, O'Shea D, Warken F and Rauschenbeutel A 2009 emphPhys. Rev. Lett. 103 053901
[25] Spillane S M, Kippenberg T J, Vahala K J, Goh K W, Wilcut E and Kimble H J 2005 emphPhys. Rev. A 71 013817
[26] Buck J R and Kimble H J 2003 emphPhys. Rev. A 67 033806
[27] Barclay P E, Srinivasan K, Painter O, Lev B and Mabuchi H 2006 emphAppl. Phys. Lett. 89 131108
[28] Yin Z Q and Li F L 2007 emphPhys. Rev. A 75 012324
[29] Ye S Y and Zheng S B 2008 emphOpt. Commun. 281 1306
[30] Miller R, Birnbaum K M, Boca A, Boozer A D and Kimble H J 2005 emphJ. Phys. B: At. Mod. Opt. Phys. 38 S551
[31] McKeever J, Boca A, Boozer A D, Buck J R and Kimble H J 2003 emphNature 425 268
[32] Duan L M, Cirac J I and Zoller P 2001 emphScience 292 1695 endfootnotesize
[1] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[2] Theoretical analysis of the coupling between Feshbach states and hyperfine excited states in the creation of 23Na40K molecule
Ya-Xiong Liu(刘亚雄), Bo Zhao(赵博). Chin. Phys. B, 2020, 29(2): 023103.
[3] Implementation of quantum phase gate between two atoms via Rydberg antiblockade and adiabatic passage
Xi Tan(谭曦), Jin-Lei Wu(吴金雷), Can Deng(邓灿), Wei-Jian Mao(毛伟建), Hai-Tao Wang(王海涛), Xin Ji(计新). Chin. Phys. B, 2018, 27(10): 100307.
[4] Geometrical representation of coherent tunneling process in two-waveguide and three-waveguide coupler
Jian Shi(时坚), Rui-Qiong Ma(马瑞琼), Zuo-Liang Duan(段作梁), Meng Liang(梁猛), Bao-Yu Chai(柴宝玉), Jun Dong(董军). Chin. Phys. B, 2017, 26(12): 124214.
[5] Production and detection of ultracold Cs2 molecules via four-photon adiabatic passage
Li Jian (李健), Liu Yong (刘勇), Cong Shu-Lin (丛书林). Chin. Phys. B, 2014, 23(1): 010308.
[6] Generation of four-atom Greenberger-Horn-Zeilinger state via adiabatic passage
Zhang Chun-Ling (张春玲), Chen Mei-Feng (陈美锋). Chin. Phys. B, 2013, 22(5): 050307.
[7] High-speed chaotic communication using an optical fibre ring as a key
Zou Lin(邹琳), Feng Ye(冯野), Yang Yi-Biao(杨毅彪), Wang An-Bang(王安帮), Yang Ling-Zhen(杨玲珍), and Zhang Jian-Zhong(张建忠) . Chin. Phys. B, 2011, 20(9): 094209.
[8] Photoluminescence of an Yb3+/Al3+-codoped microstructured optical fibre
Xia Chang-Ming(夏长明), Zhou Gui-Yao(周桂耀), Han Ying(韩颖), and Hou Lan-Tian(侯蓝田) . Chin. Phys. B, 2011, 20(8): 087802.
[9] Atomic N00N state generation in distant cavities by virtual excitations
Yang Rong-Can (杨榕灿), Li Gang (李刚), Li Jie (李杰), Zhang Tian-Cai (张天才). Chin. Phys. B, 2011, 20(6): 060302.
[10] Deterministic generation of Greenberger–Horne–Zeilinger and W states for three distant atoms via adiabatic passage
Song Pei-Jun (宋佩君), Si Liu-Gang (司留刚), Yang Xiao-Xue (杨晓雪). Chin. Phys. B, 2011, 20(5): 050308.
[11] One-step generation of qutrit entanglement via adiabatic passage in cavity quantum electrodynamics
Ma Song-She(马宋设), Chen Mei-Feng(陈美锋), and Jiang Xia-Ping(蒋夏萍) . Chin. Phys. B, 2011, 20(12): 120308.
[12] Quantum logic operations on two distant atoms trapped in two optical-fibre-connected cavities
Zhang Ying-Qiao(张英俏), Zhang Shou(张寿), Yeon Kyu-Hwang, and Yu Seong-Cho . Chin. Phys. B, 2011, 20(12): 120310.
[13] Acoustic longitudinal mode coupling in w-shaped Al/Ge Co-doped fibre
Li Hong-Liang(李宏亮), Zhang Wei(张巍), Huang Yi-Dong(黄翊东), and Peng Jiang-De(彭江得) . Chin. Phys. B, 2011, 20(10): 104211.
[14] Robust generation of qutrit entanglement via adiabatic passage of dark states
Yang Zhen-Biao(杨贞标), Wu Huai-Zhi(吴怀志), and Zheng Shi-Biao(郑仕标). Chin. Phys. B, 2010, 19(9): 094205.
[15] Stimulated supercontinuum-radiation generation of carbon disulfide by all-trans-β-carotene fluorescence enhancement effect in liquid core optical fibre
Men Zhi-Wei(门志伟), Fang Wen-Hui(房文汇), Li Zuo-Wei(里佐威), Qu Guan-Nan(曲冠男),Gao Shu-Qin(高淑琴), Lu Guo-Hui(陆国会),Yang Jian-Ge(杨健戈), and Sun Cheng-Lin(孙成林). Chin. Phys. B, 2010, 19(8): 084206.
No Suggested Reading articles found!