Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(5): 050312    DOI: 10.1088/1674-1056/20/5/050312
GENERAL Prev   Next  

Scheme for implementing perfect quantum teleportation with four-qubit entangled states in cavity quantum electrodynamics

Tang Jing-Wu (唐京武), Zhao Guan-Xiang (赵冠湘), He Xiong-Hui (何雄辉)
School of Physics, Hunan University of Science and Technology, Xiangtan 411201, China
Abstract  Recently, Peng et al. [2010 Eur. Phys. J. D 58 403] proposed to teleport an arbitrary two-qubit state with a family of four-qubit entangled states, which simultaneously include the tensor product of two Bell states, linear cluster state and Dicke-class state. This paper proposes to implement their scheme in cavity quantum electrodynamics and then presents a new family of four-qubit entangled state $|\varOmega\rangle_{1234}$. It simultaneously includes all the well-known four-qubit entangled states which can be used to teleport an arbitrary two-qubit state. The distinct advantage of the scheme is that it only needs a single setup to prepare the whole family of four-qubit entangled states, which will be very convenient for experimental realization. After discussing the experimental condition in detail, we show the scheme may be feasible based on present technology in cavity quantum electrodynamics.
Keywords:  entanglement      teleportation      cavity quantum electrodynamics  
Received:  08 October 2010      Revised:  30 November 2010      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  42.50.Pq (Cavity quantum electrodynamics; micromasers)  

Cite this article: 

Tang Jing-Wu (唐京武), Zhao Guan-Xiang (赵冠湘), He Xiong-Hui (何雄辉) Scheme for implementing perfect quantum teleportation with four-qubit entangled states in cavity quantum electrodynamics 2011 Chin. Phys. B 20 050312

[1] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[2] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[3] Hillery M, Buzek V and Berthiaume A 1999 Phys. Rev. A 59 1829
[4] Greenberger D M, Horne M A, Shimony A and Zeilinger A 1990 Am. J. Phys. 58 1131
[5] Dür W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
[6] Raussendorf R and Briegel H J 2001 Phys. Rev. Lett. 86 5188
[7] Yeo Y and Chua W K 2006 Phys. Rev. Lett. 96 060502
[8] Peng Z H, Zou J and Liu X J 2010 Eur. Phys. J. D 58 403
[9] Dicke R H 1954 Phys. Rev. 93 99
[10] Ye L, Yu L B and Guo G C 2005 Phys. Rev. A 72 034304
[11] Wang X W and Yang G J 2008 Phys. Rev. A 78 024301
[12] Kiesel N, Schmid C, Weber U, Tóth G, Gühne O, Ursin R and Weinfurter H 2005 Phys. Rev. Lett. 95 210502
[13] Zhang W, Liu Y M, Wang Z Y and Zhang Z J 2008 Opt. Commun. 281 4549
[14] Zheng X J, Xu H, Fang M F and Zhu K C 2010 Chin. Phys. B 19 034207
[15] Zheng S B 2006 Phys. Rev. A 73 065802
[16] Wieczorek W, Schmid C, Kiesel N, Pohlner R, Gühne O and Weinfurter H 2008 Phys. Rev. Lett. 101 010503
[17] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[18] Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
[19] Zheng S B 2003 Phys. Rev. A 68 035801
[20] Jung E, Hwang M R, Ju Y H, Kim M S, Yoo S K, Kim H, Park D, Son J W, Tamaryan S and Cha S K 2008 Phys. Rev. A 78 012312
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[5] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[6] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[7] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[8] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[9] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[10] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[11] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[12] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[13] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[14] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[15] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
No Suggested Reading articles found!