Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(5): 050305    DOI: 10.1088/1674-1056/20/5/050305
GENERAL Prev   Next  

Dense coding with a two-qubit Heisenberg XYZ chain under the influence of phase decoherence

Sulayiman Simayi(苏拉依曼·司马义), Aihemaiti Abulizi(艾合买提·阿不力孜), Mushajiang Yaermaimaiti(木沙江·亚尔买买提), Cai Jiang-Tao(蔡江涛), and Qiao Pan-Pan(乔盼盼)
School of Physics and Electronic Engineering, Xinjiang Normal University, Wulumuqi 830054, China
Abstract  We investigate the joint effects of phase decoherence, Dzyaloshinskii–Moriya (DM) interaction and inhomogeneity of the external magnetic field (b) on dense coding in a two-qubit anisotropic Heisenberg XYZ spin chain. Analytical expressions are obtained for the dense coding capacity. It is found that valid dense coding is always possible with this model when the system is initially prepared in the maximum entangled state. Moreover, optimal dense coding can be implemented for this initial state as long as the mean spin–spin coupling constant J+ of the XY plane is larger than b and the DM interaction despite the intrinsic decoherence. Non-maximal entangled initial states are found to be undesirable for dense coding with this model.
Keywords:  dense coding      intrinsic decoherence      DM interaction  
Received:  03 July 2010      Revised:  17 January 2011      Accepted manuscript online: 
PACS:  03.67.-a (Quantum information)  
  03.65.Ud (Entanglement and quantum nonlocality)  
  75.10.Pq (Spin chain models)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10064004), the Priority Subjects Program for Theoretical Physics of Xinjiang Normal University (XJNU), China, and the Science and Technology Innovative Foundation for Graduate Students of XJNU, China (Grant No. 20101203).

Cite this article: 

Sulayiman Simayi(苏拉依曼·司马义), Aihemaiti Abulizi(艾合买提·阿不力孜), Mushajiang Yaermaimaiti(木沙江·亚尔买买提), Cai Jiang-Tao(蔡江涛), and Qiao Pan-Pan(乔盼盼) Dense coding with a two-qubit Heisenberg XYZ chain under the influence of phase decoherence 2011 Chin. Phys. B 20 050305

[1] Bennett C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[2] Barenco A and Ekert A K 1995 J. Mod. Opt. 42 1253
[3] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[4] Mattle K, Weinfurter H, Kwait P G and Zeilinger A 1996 Phys. Rev. 76 4656
[5] Hiroshima T 2001 J. Phys. A: Math. Theor. 34 6907
[6] Bose S, Plenio M B and Vedral V 2000 J. Mod. Opt. 47 291
[7] Holevo A S 1973 Probl. Inf. Transm. 9 177
[8] Holevo A S 1998 IEEE Trans. Inf. Theory. 44 269
[9] Schumacher B and Westmorland M D 1997 Phys. Rev. A 56 131
[10] Hiroshima T 2001 J. Phys. A: Math. Gen. 34 6907
[11] Kamta G L and Starace A F 2001 Phys. Rev. Lett. 88 107901
[12] Zhang G F and Li S S 2005 Phys. Rev. A 72 034302
[13] Neilsen M A 1998 Quantum Information Theory (Ph. D. Thesis) (Albuquerque: University of Mexico)
[14] Glaser U, B"uttner H and Fehske H 2003 Phys. Rev. A 68 032318
[15] Abliz A, Cai J T, Zhang G F and Jin G S 2009 J. Phys. B: At. Mol. Opt. Phys. 42 215503
[16] Zhang G F 2009 Phys. Scr. 79 015001
[17] Guo J L and Song H S 2010 Eur. Phys. J. D 56 255
[18] Guo J L, Nie J and Song H S 2008 Commun. Theor. Phys. 49 1435
[19] Xie L J, Zhang D Y, Tang S Q, Zhan X G and Gao F 2009 Chin. Phys. B 18 3203
[20] Massashi B, Sachiko K and Fumiaki S 2007 J. Phys. B: At. Mol. Opt. Phys. 40 2641
[21] Bose S 2003 Phys. Rev. Lett. 91 207901
[22] Xu X B, Liu J M and Yu P F 2008 Chin. Phys. B 17 0456
[23] Hu X M and Liu J M 2009 Chin. Phys. B 18 0411
[24] Guo J L and Song H S 2008 Phys. Scr. 78 045002
[25] Milburn G J 1991 Phys. Rev. A 44 5401
[26] Hu X D, de Souse R and Das Sarma S 2001 Phys. Rev. Lett. 86 918
[27] Burkard G and Loss D 1999 Phys. Rev. B 60 11404 endfootnotesize
[1] Effective model for rare-earth Kitaev materials and its classical Monte Carlo simulation
Mengjie Sun(孙梦杰), Huihang Lin(林慧航), Zheng Zhang(张政), Yanzhen Cai(蔡焱桢), Wei Ren(任玮), Jing Kang(康靖), Jianting Ji(籍建葶), Feng Jin(金峰), Xiaoqun Wang(王孝群), Rong Yu(俞榕), Qingming Zhang(张清明), and Zhengxin Liu(刘正鑫). Chin. Phys. B, 2021, 30(8): 087503.
[2] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[3] Dense coding capacity in correlated noisy channels with weak measurement
Jin-Kai Li(李进开), Kai Xu(徐凯), and Guo-Feng Zhang(张国锋). Chin. Phys. B, 2021, 30(11): 110302.
[4] Optimal quantum parameter estimation of two-qutrit Heisenberg XY chain under decoherence
Hong-ying Yang(杨洪应), Qiang Zheng(郑强), Qi-jun Zhi(支启军). Chin. Phys. B, 2017, 26(1): 010601.
[5] Entanglement in a two-spin system with long-range interactions
Soltani M R, Mahdavifar S, Mahmoudi M. Chin. Phys. B, 2016, 25(8): 087501.
[6] Effects of intrinsic decoherence on various correlations and quantum dense coding in a two superconducting charge qubit system
Wang Fei (王飞), Maimaitiyiming-Tusun (麦麦提依明·吐孙), Parouke-Paerhati (帕肉克·帕尔哈提), Ahmad-Abliz (艾合买提·阿不力孜). Chin. Phys. B, 2015, 24(9): 090307.
[7] Efficient scheme for realizing quantum dense coding with GHZ state in separated low-Q cavities
Sun Qian (孙倩), He Juan (何娟), Ye Liu (叶柳). Chin. Phys. B, 2014, 23(6): 060305.
[8] Measurement-induced disturbance in Heisenberg XY spin model with Dzialoshinskii-Moriya interaction under intrinsic decoherence
Shen Cheng-Gao (沈诚诰), Zhang Guo-Feng (张国锋), Fan Kai-Ming (樊开明), Zhu Han-Jie (朱汉杰). Chin. Phys. B, 2014, 23(5): 050310.
[9] Quantum steganography with large payload based on dense coding and entanglement swapping of Greenberger-Horne-Zeilinger states
Ye Tian-Yu (叶天语), Jiang Li-Zhen (蒋丽珍). Chin. Phys. B, 2013, 22(5): 050309.
[10] Quantum superdense coding based on hyperentanglement
Zhao Rui-Tong (赵瑞通), Guo Qi (郭奇), Chen Li (陈丽), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2012, 21(8): 080303.
[11] A realizable multi-bit dense coding scheme with an Einstein–Podolsky–Rosen channel
Guo Qi (郭奇), Cheng Liu-Yong (程留永), Wang Hong-Fu (王洪福), Zhang Shou (张寿), Yeon Kyu-Hwang. Chin. Phys. B, 2012, 21(10): 100301.
[12] Perfect quantum teleportation and dense coding protocols via the 2N-qubit W state
Wang Mei-Yu(王美玉) and Yan Feng-Li(闫凤利) . Chin. Phys. B, 2011, 20(12): 120309.
[13] A simple scheme for implementing four-atom quantum dense coding in cavity QED
Zheng Xiao-Juan(郑小娟), Xu Hui(徐慧), Fang Mao-Fa(方卯发), and Zhu Kai-Cheng(朱开成). Chin. Phys. B, 2010, 19(1): 010309.
[14] Effects of inhomogeneous couplings between atoms and acavity field on entanglement dynamics
Guo Jin-Liang(郭金良), Xia Yan(夏岩), and Song He-Shan(宋鹤山). Chin. Phys. B, 2010, 19(1): 010310.
[15] Entanglement dynamics of a Heisenberg chain with Dzyaloshinskii--Moriya interaction
Zheng Qiang(郑强), Zhang Xiao-Ping(张小平), Zhi Qi-Jun(支启军), and Ren Zhong-Zhou(任中洲). Chin. Phys. B, 2009, 18(8): 3210-3214.
No Suggested Reading articles found!