Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(5): 050302    DOI: 10.1088/1674-1056/20/5/050302
GENERAL Prev   Next  

Conservation issue of pairwise quantum discord and entanglement of two coupled qubits in a two-mode vacuum cavity

Chen Qiu-Ying (陈秋英), Fang Mao-Fa (方卯发), Xiao Xing (肖兴), Zhou Xiang-Feng (周湘峰)
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control, Ministry of Education, and College of Physics and Information Science, Hunan Normal University, Changsha 410081, China
Abstract  The conservation issues of pairwise quantum discord and entanglement of two qubits coupled to a two-mode vacuum cavity are investigated by considering the dipole–dipole interaction between two qubits. It is found that the sum of the square of the pairwise quantum discords and the sum of the square of the pairwise concurrences are both conserved in the strong dipole–dipole interaction limit. However, in the middle dipole–dipole and weak dipole–dipole interaction limits, the sum of the square of the pairwise concurrences is still conserved while the sum of the square of the pairwise discords is not. The crucial reason for this is that the quantum discords are not equivalent if the measurements are performed on different subsystems in a general situation. So it is very important for quantum computation depending on the quantum discord to select the target performed by the measurements.
Keywords:  quantum discord      quantum entanglement      dipole–dipole (DD) interaction  
Received:  09 November 2010      Revised:  03 December 2010      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.67.Mn (Entanglement measures, witnesses, and other characterizations)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074071), Hunan Provincial Natural Science Foundation, China (Grant Nos. 06JJ4003 and 06JJ2014), and the Young Science Research Foundation of Hunan Provincial Education Department, China (Grant No. 04B070).

Cite this article: 

Chen Qiu-Ying (陈秋英), Fang Mao-Fa (方卯发), Xiao Xing (肖兴), Zhou Xiang-Feng (周湘峰) Conservation issue of pairwise quantum discord and entanglement of two coupled qubits in a two-mode vacuum cavity 2011 Chin. Phys. B 20 050302

[1] Einstein A, Podolsky B and Rosen N 1935 Phys. Rev. 47 777
[2] Schrõdinger E 1935 Naturwissenschaften. 23 807
[3] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[4] Breuer H P and Petruccione F 2002 The Theory of Open Quantum Systems (Oxford: Oxford University Press)
[5] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[6] Yu T and Eberly J H 2009 Science 323 598
[7] López C E, Romero G, Lastra F, Solano E and Retamal J C 2008 Phys. Rev. Lett. 101 080503
[8] Yõnacc M, Yu T and Eberly J H 2007 J. Phys. B: At. Mol. Opt. Phys. 40 S45
[9] Chan S, Reid M D and Ficek Z 2010 J. Phys. B: At. Mol. Opt. Phys. 43 215505
[10] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[11] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[12] Shabani A and Lidar D A 2009 Phys. Rev. Lett. 102 100402
[13] Piani M, Christandl M, Mora C E and Horodecki P 2009 Phys. Rev. Lett. 102 250503
[14] Datta A and Gharibian S 2009 Phys. Rev. A 79 042325
[15] Werlang T, Souza S, Fanchini F F and Villas Boas C J 2009 Phys. Rev. A 80 024103
[16] Maziero J, C'eleri L C, Serra R M and Vedral V 2009 Phys. Rev. A 80 044102
[17] Sarandy M S 2009 Phys. Rev. A 80 022108
[18] Datta A 2009 Phys. Rev. A 80 052304
[19] Lanyon B P, Barbieri M, Almeida M P and White A G 2010 Phys. Rev. Lett. 101 200501
[20] Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B and Guo G C 2010 Nat. Comm. 101 7
[21] Wang B, Xu Z Y, Chen Z Q and Feng M 2010 Phys. Rev. A 80 014101
[22] Vasile R, Giorda P, Olivares S, Paris M G A and Maniscalco S 2010 Phys. Rev. A 82 012313
[23] Modi K, Paterek T, Son W, Vedral V and Williamson M 2010 Phys. Rev. Lett. 104 080501
[24] Xiao X, Fang M F, Li Y L, Kang G D and Wu C 2010 Opt. Commun. 283 3001
[25] Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401
[26] Fanchini F F, Werlang T, Brasil C A, Arruda L G E and Caldeira A O 2010 Phys. Rev. A 81 052107
[27] Ali M, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[28] Bylicka B and Chru'sci'nski D 2010 Phys. Rev. A 81 062102
[29] Giorda P and Paris M G A 2010 Phys. Rev. Lett. 105 020503
[30] Adesso G and Datta A 2010 Phys. Rev. Lett. 105 030501
[31] Wang Q, Liao J Q and Zeng H S 2010 Chin. Phys. B 19 100311
[32] Guo H and Xiong H N 2008 Chin. Phys. B 17 971
[33] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[34] Henderson L and Vedral V 2001 J. Phys. A: Math. Theor. 34 6899
[35] Vedral V 2003 Phys. Rev. Lett. 90 050401
[1] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[2] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[3] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[4] Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Chin. Phys. B, 2022, 31(4): 040308.
[5] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[6] Influences of spin-orbit interaction on quantum speed limit and entanglement of spin qubits in coupled quantum dots
M Bagheri Harouni. Chin. Phys. B, 2021, 30(9): 090301.
[7] Nonlocal advantage of quantum coherence and entanglement of two spins under intrinsic decoherence
Bao-Min Li(李保民), Ming-Liang Hu(胡明亮), and Heng Fan(范桁). Chin. Phys. B, 2021, 30(7): 070307.
[8] Entanglement properties of GHZ and W superposition state and its decayed states
Xin-Feng Jin(金鑫锋), Li-Zhen Jiang(蒋丽珍), and Xiao-Yu Chen(陈小余). Chin. Phys. B, 2021, 30(6): 060301.
[9] Controlling the entropic uncertainty and quantum discord in two two-level systems by an ancilla in dissipative environments
Rong-Yu Wu(伍容玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(3): 037302.
[10] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[11] Reversion of weak-measured quantum entanglement state
Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军). Chin. Phys. B, 2020, 29(7): 074202.
[12] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[13] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[14] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[15] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
No Suggested Reading articles found!