Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 046103    DOI: 10.1088/1674-1056/20/4/046103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Theoretical investigation of the thermoelectric transport properties of BaSi2

Peng Hua(彭华)a)† , Wang Chun-Lei(王春雷) a), Li Ji-Chao(李吉超)a), Zhang Rui-Zhi(张睿智)a), Wang Hong-Chao(王洪超) a), and Sun Yi(孙毅)b)
a School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China; b Physics Department, Changji University, Changji 831100, Xinjiang Uygur Autonomous Region, China
Abstract  The full-potential linear augmented plane wave method based on density functional theory is employed to investigate the electronic structure of BaSi2. With the constant relaxation time and rigid band approximation, the electrical conductivity, Seebeck coefficient and figure of merit are calculated by using Boltzmann transport theory, further evaluated as a function of carrier concentration. We find that the Seebeck coefficient is more anisotropic than electrical conductivity. The figure of merit of BaSi2 is predicted to be quite high at room temperature, implying that optimal doping may be an effective way to improve thermoelectric properties.
Keywords:  thermoelectric transport property      density functional theory      Boltzmann transport theory  
Received:  15 August 2010      Revised:  16 November 2010      Accepted manuscript online: 
PACS:  61.66.Dk (Alloys )  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  71.15.-m (Methods of electronic structure calculations)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2007CB607504) and Graduate Independent Innovation Foundation of Shandong University (Grant No. yzc09076).

Cite this article: 

Peng Hua(彭华), Wang Chun-Lei(王春雷), Li Ji-Chao(李吉超), Zhang Rui-Zhi(张睿智), Wang Hong-Chao(王洪超), and Sun Yi(孙毅) Theoretical investigation of the thermoelectric transport properties of BaSi2 2011 Chin. Phys. B 20 046103

[1] Rowe D M 1995 CRC Handbook of Thermoelectrics (Boca Raton: CRC Press) p. 211
[2] Zhang Q, Zhao X B, Yin H and Zhu T J 2008 J. Alloys Compd. 464 9
[3] Nolas G S, Wang D and Beekman M 2007 Phys. Rev. B 76 235204
[4] Peng H, Wang C L, Li J C, Wang H C and Wang M X 2010 Acta Phys. Sin. 59 4123 (in Chinese)
[5] Li H, Tang X F, Chao W Q and Zhang Q J 2009 Chin. Phys. B 18 287
[6] Chen Y Q, Luo J, Liang J K, Li J B and Rao G H 2009 Chin. Phys. B 18 4944
[7] Hashimoto K, Kurosaki K, Imamura Y, Muta H and Yamanaka S 2007 J. Appl. Phys. 102 063703
[8] Hashimoto K, Kurosaki K, Muta H and Yamanaka S 2008 Mater. Trans. 49 1737
[9] Zaitsev V K, Fedorov M I, Gurieva E A, Eremin I S, Konstantinov P P, Samunin A Y and Vedernikov M V 2006 Phys. Rev. B 74 045207
[10] Imai Y, Watanabe A and Mukaida M 2003 J. Alloys Compd. 358 257
[11] Kishino S, Imai T, Iida T, Nakaishi Y, Shinada M, Takanashi Y and Hamada N 2007 J. Alloys Compd. 428 22
[12] Nakamura T, Suemasu T, Takakura K, Hasegawa F, Wakahara A and Imai M 2002 Appl. Phys. Lett. 81 1032
[13] Imai M and Hirano T 1995 J. Alloys Compd. 224 111
[14] Schwarz K, Blaha P and Madsen G K H 2002 Comput. Phys. Commun. 147 71
[15] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[16] Madsen G K H and Singh D J 2006 Comput. Phys. Commun. 175 67
[17] Wang D, Tang L, Long M Q and Shuai Z G 2009 J. Chem. Phys. 131 224704
[18] Evers J 1980 J. Solid State Chem. 32 77
[19] Morita K, Inomata Y and Suemasu T 2006 Thin Solid Films 508 363 endfootnotesize
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[3] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[8] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[9] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[10] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[11] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[12] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
[15] Advances and challenges in DFT-based energy materials design
Jun Kang(康俊), Xie Zhang(张燮), and Su-Huai Wei(魏苏淮). Chin. Phys. B, 2022, 31(10): 107105.
No Suggested Reading articles found!