Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 040508    DOI: 10.1088/1674-1056/20/4/040508
GENERAL Prev   Next  

Ion-acoustic waves in plasma of warm ions and isothermal electrons using time-fractional KdV equation

Sayed A. El-Wakil, Essam M. Abulwafa, Emad K. El-Shewy, and Abeer A. Mahmoud
Theoretical Physics Research Group, Physics Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
Abstract  The ion-acoustic solitary wave in collisionless unmagnetized plasma consisting of warm ions-fluid and isothermal electrons is studied using the time fractional KdV equation. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation for small but finite amplitude ion-acoustic wave in warm plasma. The Lagrangian of the time fractional KdV equation is used in a similar form to the Lagrangian of the regular KdV equation with fractional derivative for the time differentiation. The variation of the functional of this Lagrangian leads to the Euler-Lagrange equation that gives the time fractional KdV equation. The variational-iteration method is used to solve the derived time fractional KdV equation. The calculations of the solution are carried out for different values of the time fractional order. These calculations show that the time fractional can be used to modulate the electrostatic potential wave instead of adding a higher order dissipation term to the KdV equation. The results of the present investigation may be applicable to some plasma environments, such as the ionosphere plasma.
Keywords:  ion-acoustic waves      Euler--Lagrange equation      Riemann--Liouvulle fractional derivative      fractional KdV equation      variational-iteration method  
Received:  14 November 2010      Revised:  04 December 2010      Accepted manuscript online: 
PACS:  05.45.Df (Fractals)  
  05.30.Pr (Fractional statistics systems)  

Cite this article: 

Sayed A. El-Wakil, Essam M. Abulwafa, Emad K. El-Shewy, and Abeer A. Mahmoud Ion-acoustic waves in plasma of warm ions and isothermal electrons using time-fractional KdV equation 2011 Chin. Phys. B 20 040508

[1] Whitham G 1974 Linear and Nonlinear Waves (New York: Wiley)
[2] Davidson R 1972 Methods in Nonlinear Plasma Theory (New York: Academic Press)
[3] El-Labany S K and El-Hanbaly A M 1995 Il Nuovo Cimento D 17 547
[4] Washimi H and Taniuti T 1966 Phys. Rev. Lett. 17 996
[5] Elwakil S A, Attia M T, Zahran M A, El-Shewy E K and Abdelwahed H G 2006 Zeitschrift für Naturforschung A 61a 316
[6] El-Shewy E K, Zahran M A, Schoepf K and Elwakil S A 2008 Phys. Scr. 78 025501
[7] Riewe F 1996 Phys. Rev. E 53 1890
[8] Riewe F 1997 Phys. Rev. E 55 3581
[9] Agrawal O P 2002 J. Math. Anal. Appl. 272 368
[10] Agrawal O P 2007 J. Phys. A: Math. Theor. 40 6287
[11] Baleanu D and Muslih S I 2005 Phys. Scr. 72 119
[12] Muslih S I, Baleanu D and Rabei E 2006 Phys. Scr. 73 436
[13] Baleanu D 2009 Phys. Scr. T136 014006
[14] Tarasov V E and Zaslavsky G M 2005 Physica A: Stat. Mech. Appl. 354 249
[15] Tarasov V E and Zaslavsky G M 2006 J. Phys. A: Math. Gen. 39 9797
[16] Fujioka J 2010 Commun. Fract. Calcul. 1 1
[17] Wu G C and He J H 2010 Nonlinear Sci. Lett. A 1 281
[18] Agrawal O P, Tenreiro Machado J A and Sabatier J 2004 Nonlinear Dynam. 38 No. 4
[19] Sabatier J, Agrawal O P and Tenreiro Machado J A 2007 Advances in Fractional Calculus (Dordrecht, The Netherlands: Springer)
[20] Baleanu D and Tenreiro Machado J A 2009 Phys. Scr. T136
[21] Podlubny I 1999 Fractional Differential Equations (San Diego: Academic Press)
[22] Kilbas A A, Srivastava H M and Trujillo J J 2006 Theory and Applications of Fractional Differential Equations (Amsterdam: Elsevier)
[23] Babakhani A and Gejji V D 2003 J. Math. Anal. Appl. 278 434
[24] He J H 1998 Comput. Meth. Appl. Mech. Eng. 167 57
[25] Momani S, Odibat Z and Alawnah A 2008 Numer. Meth. Partial Differential Equations 24 261
[26] Molliq R Y, Noorani M S M and Hashim I 2009 Nonlinear Analysis: Real World Applications 10 1854
[27] Sweilam N H, Khader M M and Al-Bar R F 2007 Phys. Lett. A 371 26
[28] El-Wakil S A, Abulwafa E M, Zahran M A and Mahmoud A A 2010 Nonlinear Dynamics, in press DOI 10.1007/s11071-010-9873-5
[29] Wu G C and Lee E W M 2010 Phys. Lett. A 374 2506
[30] He J H, Wu G C and Austin F 2010 Nonlinear Sci. Lett. A 1 1
[31] He J H 1997 Commun. Nonlinear Sci. Numer. Simul. 2 230
[32] He J H 1977 Int. J. Turbo Jet-Engines 14 23
[33] He J H 2004 Chaos, Solitons & Fractals 19 847
[34] He J H and Wu X H 2006 Chaos, Solitons & Fractals 29 108
[35] Abulwafa E M, Abdou M A and Mahmoud A A 2008 Zeitschrift für Naturforschung A 63a 131 endfootnotesize
[1] The (3+1)-dimensional generalized mKdV-ZK equation for ion-acoustic waves in quantum plasmas as well as its non-resonant multiwave solution
Xiang-Wen Cheng(程香雯), Zong-Guo Zhang(张宗国), and Hong-Wei Yang(杨红卫). Chin. Phys. B, 2020, 29(12): 124501.
[2] Parametric instabilities in single-walled carbon nanotubes
He Cai-Xia (何彩霞), Jian Yue (简粤), Qi Xiu-Ying (祁秀英), Xue Ju-Kui (薛具奎). Chin. Phys. B, 2014, 23(2): 025202.
[3] Effects of bi-kappa distributed electrons on dust-ion-acoustic shock waves in dusty superthermal plasmas
M. S. Alam, M. M. Masud, A. A. Mamun. Chin. Phys. B, 2013, 22(11): 115202.
[4] Modulational instability of ion-acoustic waves in a warm plasma
Xue Ju-Kui (薛具奎), Duan Wen-Shan (段文山), Lang He (郎和). Chin. Phys. B, 2002, 11(11): 1184-1187.
No Suggested Reading articles found!