Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 040504    DOI: 10.1088/1674-1056/20/4/040504
GENERAL Prev   Next  

Taming desynchronized bursting with delays in the Macaque cortical network

Wang Qing-Yun(王青云)a), Murks Aleksandrab), Perc Matjavžb), and Lu Qi-Shao(陆启韶) a)
a Department of Dynamics and Control, Beihang University, Beijing 100191, China; b Department of Physics, Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška Cesta 160, SI-2000 Maribor, Slovenia
Abstract  Inhibitory coupled bursting Hindmarsh-Rose neurons are considered as constitutive units of the Macaque cortical network. In the absence of information transmission delay the bursting activity is desynchronized, giving rise to spatiotemporally disordered dynamics. This paper shows that the introduction of finite delays can lead to the synchronization of bursting and thus to the emergence of coherent propagating fronts of excitation in the space-time domain. Moreover, it shows that the type of synchronous bursting is uniquely determined by the delay length, with the transitions from one type to the other occurring in a step-like manner depending on the delay. Interestingly, as the delay is tuned close to the transition points, the synchronization deteriorates, which implies the coexistence of different bursting attractors. These phenomena can be observed by different but fixed coupling strengths, thus indicating a new role for information transmission delays in realistic neuronal networks.
Keywords:  synchronization      bursting      information transmission delay      Macaque cortical network      inhibitory coupling  
Received:  20 September 2010      Revised:  25 October 2010      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10972001, 10702023 and 10832006).

Cite this article: 

Wang Qing-Yun(王青云), Murks Aleksandra, Perc Matjavž, and Lu Qi-Shao(陆启韶) Taming desynchronized bursting with delays in the Macaque cortical network 2011 Chin. Phys. B 20 040504

[1] Pikovsky A, Rosenblum M and Kurths J 2001 Synchronization: A Universal Concept in Nonlinear Sciences (Cambridge: Cambridge University Press)
[2] Suykens J A K and Osipov G V 2008 Chaos 18 037101
[3] Nowotny T, Huerta R and Rabinovich M I 2008 Chaos 18 037119
[4] Gray C M and Singer W 1989 Proc. Natl. Acad. Sci. USA 86 1698
[5] Bazhenov M, Stopfer M, Rabinovich M, Huerta R, Abarbanel H D I, Sejnowski T J and Laurent G 2001 Neuron 30 553
[6] Mehta M R, Lee A K and Wilson M A 2002 Nature bf417 741
[7] Lee D S 2005 Phys. Rev. E 72 026208 bibitem 8 Motter A E, Zhou C and Kurths J 2005 Europhys. Lett. 69 334
[9] Zhou C and Kurths J 2006 Phys. Rev. Lett. 96 164102
[10] Arenas A, Diaz-Guilera A and Perez-Vicente C J 2006 it Physica D 224 27
[11] Li Y L, Ma J, Zhang W and Liu Y J 2009 Chin. Phys. B 18 4598 bibitem 12 Wang Q Y, Lu Q S, Chen G R and Guo D H 2006 Phys. Lett. A 356 17
[13] Kunichika T, Tetsuya Y, Kazuyuki A and Hiroshi K 2003 Int. J. Bifur. Chaos 13 653
[14] Wang M S, Hou Z H and X H W 2006 Chin. Phys. 15 2553
[15] Belykh I, de Lange E and Hasler M 2005 Phys. Rev. Lett. 94 188101 bibitem 16 Kopell N and Ermentrout B 2004 Proc. Natl. Acad. Sci. USA 101 15482
[17] Sainz T M, Masoller C, Braun H A and Huber M T 2004 Phys. Rev. E 70 031904 bibitem 18 Maeda E, Robinson H and Kawana A 1995 J. Neurosci. 15 6834
[19] Izhikevich E M 2000 SIAM Review 43 315 bibitem 20 Batista C A S, Batista A M, de Pontes J A C, Viana R L and Lopes S R 2007 Phys. Rev. E 76 016218
[21] Wang Q Y, Lu Q S and Chen G R 2007 Physica A 374 869
[22] Wang Q Y and Lu Q S 2005 Chin. Phys. Lett. 22 543
[23] Rossoni E, Chen Y H, Ding M Z and Feng J F 2005 Phys. Rev. E 71 061904 bibitem 24 Xie X, Gong Y, Hao Y and Ma X 2010 Biophys. Chem. 146 126 bibitem 25 Ernst U, Pawelzik K and T Geisel 1995 Phys. Rev. Lett. 74 1570
[26] Wang Q Y, Duan Z S, Perc M and Chen G R 2008 EPL 83 50008
[27] Wang Q Y, Perc M, Duan Z S and Chen G R 2009 Phys. Rev. E 80 026206
[28] Liang X M, Tang M, Dhamala M and Liu Z H 2009 Phys. Rev. E 80 066202
[29] Kaiser M and Hilgetag C C 2004 Neurocomputing 58 297
[30] Kaiser M and Hilgetag C C 2006 PLoS Comput. Biol. 2 e95
[31] Hindmarsh J L and Rose R M 1984 Proc. R. Soc. Lond. B 221 87
[32] Perc M and Marhl M 2005 Phys. Rev. E 71 026229
[33] Pikovsky A S and Kurths J 1997 Phys. Rev. Lett. 78 775
[34] Izhikevich E M 2000 Int. J. Bifur. Chaos 10 1171
[35] Izhikevich E M 2006 Scholarpedia 1 1300
[36] Niebur E, Hsiao S S and Johnson K O 2002 Curr. Opin. Neurobiol. 12 190
[1] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[2] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[3] Influence of coupling asymmetry on signal amplification in a three-node motif
Xiaoming Liang(梁晓明), Chao Fang(方超), Xiyun Zhang(张希昀), and Huaping Lü(吕华平). Chin. Phys. B, 2023, 32(1): 010504.
[4] Power-law statistics of synchronous transition in inhibitory neuronal networks
Lei Tao(陶蕾) and Sheng-Jun Wang(王圣军). Chin. Phys. B, 2022, 31(8): 080505.
[5] Effect of astrocyte on synchronization of thermosensitive neuron-astrocyte minimum system
Yi-Xuan Shan(单仪萱), Hui-Lan Yang(杨惠兰), Hong-Bin Wang(王宏斌), Shuai Zhang(张帅), Ying Li(李颖), and Gui-Zhi Xu(徐桂芝). Chin. Phys. B, 2022, 31(8): 080507.
[6] Multi-target ranging using an optical reservoir computing approach in the laterally coupled semiconductor lasers with self-feedback
Dong-Zhou Zhong(钟东洲), Zhe Xu(徐喆), Ya-Lan Hu(胡亚兰), Ke-Ke Zhao(赵可可), Jin-Bo Zhang(张金波),Peng Hou(侯鹏), Wan-An Deng(邓万安), and Jiang-Tao Xi(习江涛). Chin. Phys. B, 2022, 31(7): 074205.
[7] Synchronization of nanowire-based spin Hall nano-oscillators
Biao Jiang(姜彪), Wen-Jun Zhang(张文君), Mehran Khan Alam, Shu-Yun Yu(于淑云), Guang-Bing Han(韩广兵), Guo-Lei Liu(刘国磊), Shi-Shen Yan(颜世申), and Shi-Shou Kang(康仕寿). Chin. Phys. B, 2022, 31(7): 077503.
[8] Synchronization in multilayer networks through different coupling mechanisms
Xiang Ling(凌翔), Bo Hua(华博), Ning Guo(郭宁), Kong-Jin Zhu(朱孔金), Jia-Jia Chen(陈佳佳), Chao-Yun Wu(吴超云), and Qing-Yi Hao(郝庆一). Chin. Phys. B, 2022, 31(4): 048901.
[9] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[10] Collective behavior of cortico-thalamic circuits: Logic gates as the thalamus and a dynamical neuronal network as the cortex
Alireza Bahramian, Sajjad Shaukat Jamal, Fatemeh Parastesh, Kartikeyan Rajagopal, and Sajad Jafari. Chin. Phys. B, 2022, 31(2): 028901.
[11] Measure synchronization in hybrid quantum-classical systems
Haibo Qiu(邱海波), Yuanjie Dong(董远杰), Huangli Zhang(张黄莉), and Jing Tian(田静). Chin. Phys. B, 2022, 31(12): 120503.
[12] Finite-time complex projective synchronization of fractional-order complex-valued uncertain multi-link network and its image encryption application
Yong-Bing Hu(胡永兵), Xiao-Min Yang(杨晓敏), Da-Wei Ding(丁大为), and Zong-Li Yang(杨宗立). Chin. Phys. B, 2022, 31(11): 110501.
[13] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[14] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[15] Explosive synchronization in a mobile network in the presence of a positive feedback mechanism
Dong-Jie Qian(钱冬杰). Chin. Phys. B, 2022, 31(1): 010503.
No Suggested Reading articles found!