Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 040307    DOI: 10.1088/1674-1056/20/4/040307
GENERAL Prev   Next  

Controlled quantum teleportation with Bell states

Wang Tian-Yin(王天银)a)b)† and Wen Qiao-Yan(温巧燕)a)
a State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China; b School of Mathematical Science, Luoyang Normal University, Luoyang 471022, China
Abstract  We propose a new scheme for controlled quantum teleportation with Bell states in which classical keys for controllers' portion are used. We also discuss the security of the proposed scheme and show that it can satisfy the requirements for controlled quantum teleportation. The comparison between this scheme and the previous ones shows that it is more economical and efficient.
Keywords:  controlled      teleportation      Bell state  
Received:  09 May 2010      Revised:  17 November 2010      Accepted manuscript online: 
PACS:  03.67.Hk (Quantum communication)  
  03.67.Dd (Quantum cryptography and communication security)  
  03.65.Ud (Entanglement and quantum nonlocality)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60873191, 60903152, 61003286 and 60821001), the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant Nos. 200800131016 and 20090005110010), the Beijing Nova Program, China (Grant No. 2008B51), the Key Project of the Chinese Ministry of Education (Grant No. 109014) and the Natural Science Foundation of Educational Bureau of Henan Province, China (Grant No. 2010B120008).

Cite this article: 

Wang Tian-Yin(王天银) and Wen Qiao-Yan(温巧燕) Controlled quantum teleportation with Bell states 2011 Chin. Phys. B 20 040307

[1] Wang T Y, Wen Q Y and Zhu F C 2009 Chin. Phys. B 18 3189
[2] Wang T Y and Wen Q Y 2010 Chin. Phys. B 19 060307
[3] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K Phys. Rev. Lett. 70 1895
[4] Bouwmeester D, Pan J W, Mattle K, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[5] Nielsen M A, Knill E and Laflamme R 1998 Nature 396 52
[6] Furusawa A, Sorensen J L, Braunstein S L, Fuchs C A, Kimble H J and Polzik E S 1998 Science 282 706
[7] Li W L, Li C F and Guo G C 2000 Phys. Rev. A 61 034301
[8] Pan J W, Gasparoni S, Aspelmeyer M, Jennewein T and Zeilinger A 2003 Nature 421 721
[9] Riebe M, Haffner H, Roos C F, Hansel W, Benhelm J, Lancaster G P T, Korber T W, Becher C, Schmidt-Kaler F, James D F V and Blatt R 2004 Nature 429 734
[10] Barret M D, Chiaverini J, Schaetz T, Britton J, Itano W M, Jost J D, Knill E, Langer C, Leibfried D, Ozeri R and Wineland D J 2004 Nature 429 737
[11] Zhao Z, Chen Y A, Zhang A N, Yang T, Briegel H J and Pan J W 2004 Nature 430 54
[12] Yeo Y and Chua W K 2006 Phys. Rev. Lett. 96 060502
[13] Modlawska J and Grudka A Phys. Rev. A 79 064302
[14] Ren J G, Yang B, Yi Z H, Zhou F, Chen K, Peng C Z and Pan J W 2009 Chin. Phys. B 18 3605
[15] Giampaolo S M and Illuminati F 2009 Phys. Rev. A 80 050301
[16] Noh C, Chia A, Nha H, Collett M J and Carmichael H J 2009 Phys. Rev. Lett. 102 230501
[17] Chen X B, Wen Q Y, Sun Z X, Shangguan L Y and Yang Y X 2010 Chin. Phys. B 19 010303
[18] Karlsson A and Bourennane M 1998 Phys. Rev. A 58 4394
[19] Biham E, Huttner B and Mor T 1996 Phys. Rev. A 54 2651
[20] Townsend P D 1997 Nature 385 47
[21] Bose S, Vedral V and Knight P L 1998 Phys. Rev. A 57 822
[22] Yang C P and Han S Y 2005 Phys. Lett. A 343 267
[23] An N B 2003 Phys. Rev. A 68 022321
[24] Yan F L and Wang D 2003 Phys. Lett. A 316 297
[25] Yang C P, Chu S I and Han S Y 2004 Phys. Rev. A 70 022329
[26] Gao T, Yan F L and Wang Z X 2005 Chin. Phys. 14 893
[27] Deng F G, Li C Y, Li Y S, Zhou H Y and Wang Y 2005 Phys. Rev. A 72 022338
[28] Li X H, Deng F G and Zhou H Y 2007 Chin. Phys. Lett. 24 1151
[29] Zhou P, Li X H and Deng F G 2007 J. Phys. A 40 13121
[30] Man Z X, Xia Y J and An N B 2007 J. Phys. B 40 1767
[31] Dong J and Teng J F 2008 Euro. Phys. J. D 49 129
[32] Wang Y H and Song H S 2008 Opt. Commun. 281 489
[33] Chen X B, Zhang N, Lin S, Wen Q Y and Zhu F C 2008 Opt. Commun. 281 2331
[34] Nie D, He G Q and Zeng G H 2008 J. Phys. B 41 175504
[35] Wang J, Hou K, Yuan H and Shi S H 2009 Phys. Scr. 80 015004
[36] Wang X W, Su Y H and Yang G J 2009 Quantum Information Proce. 8 319
[37] Zhang Z J, Liu Y M and Man Z X 2005 Commun. Theor. Phys. 44 847
[38] Zhang Z J and Man Z X 2005 Phys. Lett. A 341 55
[39] Zhang Z J 2006 Phys. Lett. A 352 55
[40] SaiToh A, Rahimi R and Nakahara M 2009 Phys. Rev. A 79 062313
[41] Wang X B 2005 Phys. Rev. Lett. 94 230503
[42] Lo H K, Ma X F and Chen K 2005 Phys. Rev. Lett. 94 230504
[43] Li C Y, Zhou H Y, Wang Y and Deng F G 2005 Chin. Phys. Lett. 22 1049
[44] Li C Y, Deng F G, Zhou P, Liang Y J and Zhou H Y 2006 Chin. Phys. Lett. 23 2896
[45] Deng F G, Li X H, Zhou H Y and Zhang Z J 2005 Phys. Rev. A 72 044302
[46] Deng F G, Li X H, Zhou H Y and Zhang Z J 2006 Phys. Rev. A 73 049901(E)
[47] Cai Q Y 2006 Phys. Lett. A 351 23
[48] Li X H, Deng F G and Zhou H Y 2006 Phys. Rev. A 74 054302
[49] Bennett C and Brassard G 1984 Proc. IEEE Int. Conf. on Computers, Systems and Signal Processing (New York: IEEE) p. 175
[50] Shor P W and Preskill J 2000 Phys. Rev. Lett. 85 441
[51] Lo H K and Chau H F 1999 Science 283 2050
[52] He G P 2007 Phys. Rev. Lett. 98 028901
[53] Wang T Y, Qin S J, Wen Q Y and Zhu F C 2008 Acta Phys. Sin. 57 7452 (in Chinese)
[54] Wang T Y, Wen Q Y, Gao F, Lin S and Zhu F C 2008 Phys. Lett. A 373 65
[55] Gao F, Wen Q Y and Zhu F C 2008 Chin. Phys. B 17 3189 endfootnotesize
[1] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[2] Enhancement of holding voltage by a modified low-voltage trigger silicon-controlled rectifier structure for electrostatic discharge protection
Yuankang Chen(陈远康), Yuanliang Zhou(周远良), Jie Jiang(蒋杰), Tingke Rao(饶庭柯), Wugang Liao(廖武刚), and Junjie Liu(刘俊杰). Chin. Phys. B, 2023, 32(2): 028502.
[3] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[4] Probabilistic quantum teleportation of shared quantum secret
Hengji Li(李恒吉), Jian Li(李剑), and Xiubo Chen(陈秀波). Chin. Phys. B, 2022, 31(9): 090303.
[5] Experimental realization of quantum controlled teleportation of arbitrary two-qubit state via a five-qubit entangled state
Xiao-Fang Liu(刘晓芳), Dong-Fen Li(李冬芬), Yun-Dan Zheng(郑云丹), Xiao-Long Yang(杨小龙), Jie Zhou(周杰), Yu-Qiao Tan(谭玉乔), and Ming-Zhe Liu(刘明哲). Chin. Phys. B, 2022, 31(5): 050301.
[6] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[7] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[8] Measurement-device-independent one-step quantum secure direct communication
Jia-Wei Ying(应佳伟), Lan Zhou(周澜), Wei Zhong(钟伟), and Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2022, 31(12): 120303.
[9] Controlled quantum teleportation of an unknown single-qutrit state in noisy channels with memory
Shexiang Jiang(蒋社想), Bao Zhao(赵宝), and Xingzhu Liang(梁兴柱). Chin. Phys. B, 2021, 30(6): 060303.
[10] Taking tomographic measurements for photonic qubits 88 ns before they are created
Zhibo Hou(侯志博), Qi Yin(殷琪), Chao Zhang(张超), Han-Sen Zhong(钟翰森), Guo-Yong Xiang(项国勇), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿), Geoff J. Pryde, and Anthony Laing. Chin. Phys. B, 2021, 30(4): 040304.
[11] Realization of adiabatic and diabatic CZ gates in superconducting qubits coupled with a tunable coupler
Huikai Xu(徐晖凯), Weiyang Liu(刘伟洋), Zhiyuan Li(李志远), Jiaxiu Han(韩佳秀), Jingning Zhang(张静宁), Kehuan Linghu(令狐克寰), Yongchao Li(李永超), Mo Chen(陈墨), Zhen Yang(杨真), Junhua Wang(王骏华), Teng Ma(马腾), Guangming Xue(薛光明), Yirong Jin(金贻荣), and Haifeng Yu(于海峰). Chin. Phys. B, 2021, 30(4): 044212.
[12] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[13] New DDSCR structure with high holding voltage for robust ESD applications
Zi-Jie Zhou(周子杰), Xiang-Liang Jin(金湘亮), Yang Wang(汪洋), and Peng Dong(董鹏). Chin. Phys. B, 2021, 30(3): 038501.
[14] Optically-controlled resistive switching effectsof CdS nanowire memtransistor
Jia-Ning Liu(刘嘉宁), Feng-Xiang Chen(陈凤翔), Wen Deng(邓文), Xue-Ling Yu(余雪玲), and Li-Sheng Wang(汪礼胜). Chin. Phys. B, 2021, 30(11): 116105.
[15] Enhanced gated-diode-triggered silicon-controlled rectifier for robust electrostatic discharge (ESD) protection applications
Wenqiang Song(宋文强), Fei Hou(侯飞), Feibo Du(杜飞波), Zhiwei Liu(刘志伟), Juin J. Liou(刘俊杰). Chin. Phys. B, 2020, 29(9): 098502.
No Suggested Reading articles found!