Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 040204    DOI: 10.1088/1674-1056/20/4/040204
GENERAL Prev   Next  

Linear matrix inequality approach for robust stability analysis for stochastic neural networks with time-varying delay

S. Lakshmanan and P. Balasubramaniam
Department of Mathematics, Gandhigram Rural University, Gandhigram -624 302, Tamilnadu, India
Abstract  This paper studies the problem of linear matrix inequality (LMI) approach to robust stability analysis for stochastic neural networks with a time-varying delay. By developing a delay decomposition approach, the information of the delayed plant states can be taken into full consideration. Based on the new Lyapunov-Krasovskii functional, some inequality techniques and stochastic stability theory, new delay-dependent stability criteria are obtained in terms of LMIs. The proposed results prove the less conservatism, which are realized by choosing new Lyapunov matrices in the decomposed integral intervals. Finally, numerical examples are provided to demonstrate the less conservatism and effectiveness of the proposed LMI method.
Keywords:  delay-dependent stability      linear matrix inequality      Lyapunov--Krasovskii functional      stochastic neural networks  
Received:  29 October 2010      Revised:  29 November 2010      Accepted manuscript online: 
PACS:  02.50.Ey (Stochastic processes)  
  02.50.Fz (Stochastic analysis)  
  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
Fund: Project supported by the Science Foundation of the Department of Science and Technology, New Delhi, India (Grant No. SR/S4/MS:485/07).

Cite this article: 

S. Lakshmanan and P. Balasubramaniam Linear matrix inequality approach for robust stability analysis for stochastic neural networks with time-varying delay 2011 Chin. Phys. B 20 040204

[1] Haykin S 1998 Neural Networks: A Comprehensive Foundation (New Jersey: Prentice Hall)
[2] Chen T and Rong L 2003 Phys. Lett. A 317 436
[3] Chen Y and Wu Y 2009 Neurocomputing 72 1065
[4] Chen J, Sun J, Liu G P and Rees D 2010 Phys. Lett. A doi: 10.1016/j.physleta.2010.08.070.
[5] Qiu F, Cui B and Wu W 2009 Appl. Math. Modelling 33 198
[6] Fu X and Li X 2011 Commun. Nonlinear Sci. Numer. Simul. 16 435.
[7] Li D, Wang H, Yang D, Zhang X H and Wang S L 2008 Chin. Phys. B 17 4091
[8] Li X and Chen Z 2009 Nonlinear Anal.: Real World Appl. 10 3253
[9] Shao J L, Huang T Z and Zhou S 2009 Neurocomputing 72 1993
[10] Chen W Y 2002 Int. J. Systems Sci. 33 917
[11] Feng W, Yang S X, Fu W and Wu H 2009 Chaos, Solitons and Fractals 41 414
[12] Chen W H and Lu X 2008 Phys. Lett. A 372 1061
[13] Wang Z, Lauria S, Fang J and Liu X 2007 Chaos, Solitons and Fractals 32 62 %Lett. A} 351 153.
[14] Huang H and Feng G 2007 Physica A 381 93
[15] Wang Z, Shu H, Fang J and Liu X 2006 Nonlinear Anal.: Real World Appl. 7 1119
[16] Zhang J, Shi P and Qiu J 2007 Nonlinear Anal.: Real World Appl. 8 1349
[17] Yu J, Zhang K and Fei S 2009 Commun. Nonlinear Sci. Numer. Simul. 14 1582
[18] Li H, Chen B, Zhou Q and Fang S 2008 Phys. Lett. A 372 3385
[19] Wu Y, Wu Y and Chen Y 2009 Neurocomputing 72 2379
[20] Rakkiyappan R, Balasubramaniam P and Lakshmanan S 2008 Phys. Lett. A 37 5290
[21] Huang C, He Y and Wang H 2008 Comput. Math. Appl. 56 1773
[22] Tang Z H and Fang J A 2008 Chin. Phys. B 17 4080
[23] Chen D L and Zhang W D 2008 Chin. Phys. B 17 1506
[24] Zhang B and Xu S, Zong G and Zou Y 2009 IEEE Trans. Circuits Syst. I 56 1241
[25] Zhang H G, Fu J, Ma T D and Tong S C 2009 Chin. Phys. B 18 3325
[26] Feng W, Yang S X and Wu H 2009 Chaos, Solitons and Fractals 42 2095
[27] Wu H, Liao X, Guo S, Feng W and Wang Z 2009 Neurocomputing 72 3263
[28] Kwon O M, Lee S M and Park J H 2010 Phys. Lett. A 374 1232
[29] Zhu X L and Yang G H 2010 Int. J. Robust Nonlinear Control 20 596
[30] Yue D, Tian E, Zhang Y and Peng C 2009 Int. J. Robust Nonlinear Control 19 377
[31] Gu K 2000 Proceedings of 39th IEEE Conference on Decision and Control p. 2805 endfootnotesize
[1] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
[2] Robust H control for uncertain Markovian jump systems with mixed delays
R Saravanakumar, M Syed Ali. Chin. Phys. B, 2016, 25(7): 070201.
[3] Robust H control of uncertain systems with two additive time-varying delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2015, 24(9): 090202.
[4] Stability analysis of Markovian jumping stochastic Cohen–Grossberg neural networks with discrete and distributed time varying delays
M. Syed Ali. Chin. Phys. B, 2014, 23(6): 060702.
[5] Improved delay-dependent robust H control of an uncertain stochastic system with interval time-varying and distributed delays
M. Syed Ali, R. Saravanakumar. Chin. Phys. B, 2014, 23(12): 120201.
[6] Cluster exponential synchronization of a class of complex networks with hybrid coupling and time-varying delay
Wang Jun-Yi (王军义), Zhang Hua-Guang (张化光), Wang Zhan-Shan (王占山), Liang Hong-Jing (梁洪晶). Chin. Phys. B, 2013, 22(9): 090504.
[7] Novel delay dependent stability analysis of Takagi–Sugeno fuzzy uncertain neural networks with time varying delays
M. Syed Ali . Chin. Phys. B, 2012, 21(7): 070207.
[8] Novel delay-distribution-dependent stability analysis for continuous-time recurrent neural networks with stochastic delay
Wang Shen-Quan (王申全), Feng Jian (冯健), Zhao Qing (赵青). Chin. Phys. B, 2012, 21(12): 120701.
[9] Robust H control for uncertain systems with heterogeneous time-varying delays via static output feedback
Wang Jun-Wei (王军威), Zeng Cai-Bin (曾才斌 ). Chin. Phys. B, 2012, 21(11): 110206.
[10] Novel stability criteria for fuzzy Hopfield neural networks based on an improved homogeneous matrix polynomials technique
Feng Yi-Fu (冯毅夫), Zhang Qing-Ling (张庆灵), Feng De-Zhi (冯德志). Chin. Phys. B, 2012, 21(10): 100701.
[11] Robust stability analysis of Takagi–Sugeno uncertain stochastic fuzzy recurrent neural networks with mixed time-varying delays
M. Syed Ali . Chin. Phys. B, 2011, 20(8): 080201.
[12] A novel mixed-synchronization phenomenon in coupled Chua's circuits via non-fragile linear control
Wang Jun-Wei(王军威), Ma Qing-Hua(马庆华), and Zeng Li(曾丽) . Chin. Phys. B, 2011, 20(8): 080506.
[13] The $\mathscr{H}_{\infty}$ synchronization of nonlinear Bloch systems via dynamic feedback control approach
D.H. Ji, J.H. Koo, S.C. Won, and Ju H. Park. Chin. Phys. B, 2011, 20(7): 070502.
[14] New synchronization analysis for complex networks with variable delays
Zhang Hua-Guang(张化光), Gong Da-Wei(宫大为), and Wang Zhan-Shan(王占山) . Chin. Phys. B, 2011, 20(4): 040512.
[15] Global synchronization of general delayed complex networks with stochastic disturbances
Tu Li-Lan(涂俐兰). Chin. Phys. B, 2011, 20(3): 030504.
No Suggested Reading articles found!