Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(3): 037701    DOI: 10.1088/1674-1056/20/3/037701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A hybrid model for the charging process of the amorphous SiO2 film in radio frequency microelectromechanical system capacitive switches

Wang Li-Feng(王立峰), Huang Qing-An(黄庆安),Tang Jie-Ying(唐洁影),and Liao Xiao-Ping(廖小平)
Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China
Abstract  Charging is one of the most important reliability issues in radio frequency microelectro- mechanical systems (RF MEMS) capacitive switches since it makes the actuation voltage unstable. This paper proposes a hybrid model to describe the transient dielectric charging and discharging process in the defect-rich amorphous SiO2 RF MEMS capacitive switches and verifies experimentally. The hybrid model contains two parts according to two different charging mechanisms of the amorphous SiO2, which are the polarisation and charge injection. The models for polarisation and for charge injection are established, respectively. Analysis and experimental results show that polarisation is always effective, while the charge injection has a threshold electric field to the amorphous SiO2 film. Under different control voltage conditions, the hybrid model can accurately describe the experimental data.
Keywords:  modeling      polarisation      charge injection      amorphous SiO2  
Received:  16 September 2010      Revised:  27 October 2010      Accepted manuscript online: 
PACS:  77.55.-g (Dielectric thin films)  
  77.22.-d (Dielectric properties of solids and liquids)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60676043).

Cite this article: 

Wang Li-Feng(王立峰), Huang Qing-An(黄庆安),Tang Jie-Ying(唐洁影),and Liao Xiao-Ping(廖小平) A hybrid model for the charging process of the amorphous SiO2 film in radio frequency microelectromechanical system capacitive switches 2011 Chin. Phys. B 20 037701

[1] Hopkinson J and Wilson E 1897 Philos. Trans. R. Soc. London 189 109
[2] Nicollian E R and Brews J R 1982 MOS (Metal Oxide Semiconductors) Physics and Technology (New York: Wiley) p492
[3] Ren H X and Hao Y 2001 Chin. Phys. 10 189
[4] Goldsmith C, Ehmke J, Malczewski A, Pillans B, Eshelman S, Yao Z, Brank J and Eberly M 2001 IEEE MTT-S Int. Microwave Symp. Dig. 1 227
[5] Yuan X, Hwang J C M, Forehand D and Goldsmith C L 2005 IEEE MTT-S Int. Microwave Symp. Dig. 1 753
[6] Mell'e S, De Conto D, Mazenq L, Dubuc D, Grenier K, Bary L, Vendier O, Muraro J L, Cazaux J L and Plana R 2005 IEEE MTT-S Int. Microwave Symp. Dig. 1 757
[7] Spengen W M, Peurs R, Mertens R and Wolf I D 2004 J. Micromech. Microeng. 14 514
[8] Papaionnou G J, Exarchos M, Theonas V, Wang G and Papapolymerou 2005 J. IEEE MTT-S Int. Microwave Symp. Dig. 1 761
[9] Papaioannou G, Papapolymerou J, Pons P and Plana R 2007 it Appl. Phys. Lett. 90 233507-1
[10] Shi S L, Chen D P, Jing Y P, Ou Y, Ye T C and Xu Q X 2010 it Chin. Phys. B 19 076802
[11] Wibbeler J, Pfeifer G and Hietschold M 1998 Sens. Actuators A 71 74
[12] Exarchos M, Theonas V, Pons P, Papaioannou G J, Melle S, Dubuc D, Cocetti F and Plana R 2005 Microelectron. Reliab. 45 1782
[13] Lenzlinger M and Snow E H 1969 J. Appl. Phys. 40 278
[14] Chou A I, Lai K, Kumar K, Chowdhury P and Lee J C 1997 it Appl. Phys. Lett. 70 3407
[15] Ricc`o B, Gozzi G and Lanzoni M 1998 IEEE Trans. Electron Devices 45 1554
[16] Naito M, and Beasley M R 1987 Phys. Rev. B 35 2548
[17] Peng Z, Yuan X, Hwang J C M, Forehand D and Goldsmith C L 2006 Proc. of Asia Pacific Microwave Conf. 1
[18] Jackson J D 1999 Classical Electrodynamics (New York: Wiley) p158
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[3] Data-driven modeling of a four-dimensional stochastic projectile system
Yong Huang(黄勇) and Yang Li(李扬). Chin. Phys. B, 2022, 31(7): 070501.
[4] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[5] Extrinsic equivalent circuit modeling of InP HEMTs based on full-wave electromagnetic simulation
Shi-Yu Feng(冯识谕), Yong-Bo Su(苏永波), Peng Ding(丁芃), Jing-Tao Zhou(周静涛), Song-Ang Peng(彭松昂), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(4): 047303.
[6] Parallel optimization of underwater acoustic models: A survey
Zi-jie Zhu(祝子杰), Shu-qing Ma(马树青), Xiao-Qian Zhu(朱小谦), Qiang Lan(蓝强), Sheng-Chun Piao(朴胜春), and Yu-Sheng Cheng(程玉胜). Chin. Phys. B, 2022, 31(10): 104301.
[7] An improved model of damage depth of shock-melted metal in microspall under triangular wave loading
Wen-Bin Liu(刘文斌), An-Min He(何安民), Kun Wang(王昆), Jian-Ting Xin(辛建婷), Jian-Li Shao(邵建立), Nan-Sheng Liu(刘难生), and Pei Wang(王裴). Chin. Phys. B, 2021, 30(9): 096202.
[8] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
[9] A comparative study on radiation reliability of composite channel InP high electron mobility transistors
Jia-Jia Zhang(张佳佳), Peng Ding(丁芃), Ya-Nan Jin(靳雅楠), Sheng-Hao Meng(孟圣皓), Xiang-Qian Zhao(赵向前), Yan-Fei Hu(胡彦飞), Ying-Hui Zhong(钟英辉), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(7): 070702.
[10] Modeling of microporosity formation and hydrogen concentration evolution during solidification of an Al-Si alloy
Qingyu Zhang(张庆宇), Dongke Sun(孙东科), Shunhu Zhang(章顺虎), Hui Wang(王辉), Mingfang Zhu(朱鸣芳). Chin. Phys. B, 2020, 29(7): 078104.
[11] Design and management of lithium-ion batteries: A perspective from modeling, simulation, and optimization
Qian-Kun Wang(王乾坤), Jia-Ni Shen(沈佳妮), Yi-Jun He(贺益君), Zi-Feng Ma(马紫峰). Chin. Phys. B, 2020, 29(6): 068201.
[12] Dark count in single-photon avalanche diodes: A novel statistical behavioral model
Wen-Juan Yu(喻文娟), Yu Zhang(张钰), Ming-Zhu Xu(许明珠), Xin-Miao Lu(逯鑫淼). Chin. Phys. B, 2020, 29(4): 048503.
[13] Overview of finite elements simulation of temperature profile to estimate properties of materials 3D-printed by laser powder-bed fusion
Habimana Jean Willy, Xinwei Li(李辛未), Yong Hao Tan, Zhe Chen(陈哲), Mehmet Cagirici, Ramadan Borayek, Tun Seng Herng, Chun Yee Aaron Ong, Chaojiang Li(李朝将), Jun Ding(丁军). Chin. Phys. B, 2020, 29(4): 048101.
[14] General principles to high-throughput constructing two-dimensional carbon allotropes
Qing Xie(谢庆), Lei Wang(王磊), Jiangxu Li(李江旭), Ronghan Li(李荣汉), Xing-Qiu Chen(陈星秋). Chin. Phys. B, 2020, 29(3): 037306.
[15] Molecular dynamics simulation of atomic hydrogen diffusion in strained amorphous silica
Fu-Jie Zhang(张福杰), Bao-Hua Zhou(周保花), Xiao Liu(刘笑), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2020, 29(2): 027101.
No Suggested Reading articles found!