Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(3): 033103    DOI: 10.1088/1674-1056/20/3/033103
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Relativistic calculations of 3s2 1S0–3s3p 1P1 and 3s2 1S0–3s3p 3P1,2 transition probabilities in the Mg isoelectronic sequence

Cheng Cheng(程诚)a)b), Gao Xiang(高翔)b), Qing Bo(青波)c)†, Zhang Xiao-Le(张小乐)b), and Li Jia-Ming(李家明)b)c)
a Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China; b Key Laboratory for Laser Plasmas (Ministry of Education) and Department of Physics, Shanghai Jiao Tong University, Shanghai 200240, China; c Department of Physics and Center for Atomic and Molecular Nanosciences, Tsinghua University, Beijing 100084, China
Abstract  Using the multi-configuration Dirac–Fock self-consistent field method and the relativistic configuration-interaction method, calculations of transition energies, oscillator strengths and rates are performed for the 3s2 1S0–3s3p 1P1 spin-allowed transition, 3s2 1S0–3s3p 3P1,2 intercombination and magnetic quadrupole transition in the Mg isoelectronic sequence (Mg I, Al II, Si III, P IV and S V). Electron correlations are treated adequately, including intravalence electron correlations. The influence of the Breit interaction on oscillator strengths and transition energies are investigated. Quantum electrodynamics corrections are added as corrections. The calculation results are found to be in good agreement with the experimental data and other theoretical calculations.
Keywords:  transition energies      oscillator strengths      relativistic calculation      Breit interactions  
Received:  13 May 2010      Revised:  26 May 2010      Accepted manuscript online: 
PACS:  31.15.ag (Excitation energies and lifetimes; oscillator strengths)  
  31.15.aj (Relativistic corrections, spin-orbit effects, fine structure; hyperfine structure)  
  31.15.am (Relativistic configuration interaction (CI) and many-body perturbation calculations)  
  31.30.jc (Relativistic corrections to atomic structure and properties)  
Fund: Project supported by the Key Program of Science and Technology Research of Ministry of Education of China (Grant No. 306020), the National Natural Science Foundation of China (Grant Nos. 10905040 and 10734040), the National High-Tech ICF Committee in China and the Yin-He Super-computer Center, Institute of Applied Physics and Mathematics, Beijing, China, and the National Basic Research Program of China (Grant Nos. 2010CB922900 and 2011CB921501).

Cite this article: 

Cheng Cheng(程诚), Gao Xiang(高翔), Qing Bo(青波), Zhang Xiao-Le(张小乐), and Li Jia-Ming(李家明) Relativistic calculations of 3s2 1S0–3s3p 1P1 and 3s2 1S0–3s3p 3P1,2 transition probabilities in the Mg isoelectronic sequence 2011 Chin. Phys. B 20 033103

[1] Godone A, Novero C, Tavella P and Rahimullah K 1993 Phys. Rev. Lett. 71 2364
[2] Rosenband T, Schmidt P O, Hume D B, Itano W M, Fortier T M, Stalnaker J E, Kim K, Diddams S A, Koelemeij J C J, Bergquist J C and Wineland D J 2007 Phys. Rev. Lett. 98 220801
[3] Wang X L, Liu L T, Gao X, Shen C and Li J M 2008 Chin. Phys. Lett. 25 4244
[4] Chen S H, Han X Y, Wang X L and Li J M 2007 Chin. Phys. Lett. 24 1214
[5] Qing B, Chen S H, Gao X and Li J M 2008 Chin. Phys. Lett. 25 2448
[6] Wang X L, Lu W L, Gao X and Li J M 2009 Chin. Phys. Lett. 26 043101
[7] Lundin L, Engman B, Hilke J and Martinson I 1973 Phys. Scr. 8 274
[8] Liljeby L, Lindgard A, Mannervik S, Veje E and Jelenkovic B 1980 Phys. Scr. 21 805
[9] Kernahan J A, Pinnington E H, O'Neill J A, Brooks R L and Donney K E 1979 Phys. Scr. 19 267
[10] Baudinet-Robinet Y, Dumont P D, Garnir H P, Bi'emont and Grevesse N 1979 J. Physique 40 175
[11] Irwin D J G and Livingston A E 1973 Can. J. Phys. 51 848
[12] Curtis L J, Martinson I and Buchta R 1971 Phys. Scr. 3 197
[13] Livingston A E, Kernahan J A, Irwin D J G and Pinnington E H 1975 Phys. Scr. 12 223
[14] Reistad N, Jup'en C, Huldt S, Engstr"om L and Martinson I 1985 Phys. Scr. 32 164
[15] Irwin D J G and Livingston A E 1976 Can. J. Phys. 54 805
[16] Dumont P D, Garnir H P and Baudinet-Robinet Y 1978 J. Opt. Soc. Am. 68 825
[17] Tr"abert E, Wolf A, Linkemann J and Tordoir X 1999 J. Phys. B: At. Mol. Opt. Phys. 32 537
[18] J"onsson P and Fischer C F 1997 J. Phys. B: At. Mol. Opt. Phys. 30 5861
[19] Chou H S, Chi H C and Huang K N 1993 J. Phys. B: At. Mol. Opt. Phys. 26 4079
[20] Stanek M, Glowacki L and Migdalek J 1996 J. Phys. B: At. Mol. Opt. Phys. 29 2985
[21] Chen M H and Cheng K T 1997 Phys. Rev. A 55 3440
[22] Hibbert A and Keenan F P 1987 J. Phys. B: At. Mol. Opt. Phys. 20 4693
[23] J"onsson P, He X, Fischer C F and Grant I P 2007 Comput. Phys. Commun. 177 597
[24] Grant I P 1970 Adv. Phys. 19 747
[25] Cheng C, Zhang X L, Gao X, Qing B and Li J M 2010 J. Phys. B: At. Mol. Opt. Phys. 43 105001
[26] Parpia F A, Fischer C F and Grant I P 1996 Comput. Phys. Commun. 94 249
[27] Mann J B and Johnson W R 1971 Phys. Rev. A 4 41
[28] Grant I P and McKenzie B J 1980 J. Phys. B 13 2671
[29] Grant I P 2006 Relativistic Quantum Theory of Atoms and Molecules (New York: Springer) Sections 4.9 and 10.11
[30] Qing B, Cheng C, Gao X, Zhang X L and Li J M 2010 Acta Phys. Sin. 59 4547 (in Chinese)
[31] Martin W C and Romuald Z 1980 J. Phys. Chems. Ref. Data 9 1
[32] Martin W C and Romuald Z 1979 J. Phys. Chems. Ref. Data 8 817
[33] Ralchenko Yu, Fuhr J R, Jou F C, Kramida A E, Martin W C, Podobedova L I, Reader J, Saloman E B, Sansonetti J E and Wiese W L 2005 AIP Conf. Proc. 771 276
[34] Ralchenko Y, Kramida A E, Reader J and NIST ASD Team 2008 NIST Atomic Spectra Database (version 3.1.5), available: http://physics.nist.gov/asd3 (National Institute of Standards and Technology, Gaithersburg, MD)
[35] Ralchenko Yu, Kramida A E, Reader J and NIST ASD Team 2008 NIST Atomic Spectra Database (version 3.1.4), available: http://physics.nist.gov/asd3 (National Insitute of Standards and Technology, Gaitherburg, MD)
[36] Godone A and Novero C 1992 Phys. Rev. A 45 1717
[37] Johnson B C, Smith P L and Parkinson W H 1986 Astrophys. J. 208 1013
[38] Kwong H S, Smith P L and Parkinson W H 1983 Phys. Rev. A 27 3040
[39] Angstmann E J, Dzuba V A and Flambaum V V 2004 Phys. Rev. A. 70 014102
[40] Hibbert A and Keenan F P 1987 J. Phys. B: At. Mol. Opt. Phys. 20 4693
[41] Ojha P C, Keenan F P and Hibbert A 1988 J. Phys. B: At. Mol. Opt. Phys. 21 L395
[42] Livingston A E, Irwin D J G and Pinnington E H 1972 J. Opt. Soc. Am. 62 179 endfootnotesize
[1] Spectroscopy and scattering matrices with nitrogen atom: Rydberg states and optical oscillator strengths
Yuhao Zhu(朱宇豪), Rui Jin(金锐), Yong Wu(吴勇), and Jianguo Wang(王建国). Chin. Phys. B, 2022, 31(4): 043103.
[2] Transition parameters of Li-like ions (Z=7-11) in dense plasmas
Xiang-Fu Li(李向富), Li-Ping Jia(贾利平), Hong-Bin Wang(王宏斌), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(5): 053102.
[3] Theoretical study on K, L, and M X-ray transition energies and rates of neptunium and its ions
Ismail Abdalla Saber, Dong Chen-Zhong (董晨钟), Wang Xiang-Li (王向丽), Zhou Wei-Dong (周卫东), Wu Zhong-Wen (武中文). Chin. Phys. B, 2014, 23(2): 023101.
[4] Oscillator strengths for 22S--n2P transitions of the lithium isoelectronic sequence from Z = 11 to 20
Hu Mu-Hong(胡木宏) and Wang Zhi -Wen(王治文). Chin. Phys. B, 2009, 18(6): 2244-2249.
No Suggested Reading articles found!