Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(3): 030301    DOI: 10.1088/1674-1056/20/3/030301
GENERAL Prev   Next  

Influence of selective atomic measurement on the entanglement properties of a two-atom outside cavity

Lu Dao-Ming(卢道明)
Department of Electronic Engineering, Wuyi University, Wuyishan 354300, China
Abstract  Considering three two-level atoms initially in the W or Greenberger–Horne–Zeilinger (GHZ) state, one of the three atoms is put into an initially coherent light cavity and made to resonantly interact with the cavity. The two-atom entanglement evolution outside the cavity is investigated. The influences of state-selective measurement of the atom inside the cavity and strength of the light field on the two-atom entanglement evolution outside the cavity are discussed. The results obtained from the numerical method show that the two-atom entanglement outside the cavity is strengthened through state-selective measurement of the atom inside the cavity. In addition, the strength of the light field also influences the two-atom entanglement properties.
Keywords:  quantum optics      two-level atom      selective atomic measurement      entanglement  
Received:  20 April 2010      Revised:  15 May 2010      Accepted manuscript online: 
PACS:  03.65Ud  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the Natural Science Foundation of Fujian Province, China (Grant No. 2008J0217).

Cite this article: 

Lu Dao-Ming(卢道明) Influence of selective atomic measurement on the entanglement properties of a two-atom outside cavity 2011 Chin. Phys. B 20 030301

[1] Davidovich L, Zagury N, Brune M, Raimond J M and Haroche S 1994 Phys. Rev. A 50 R895
[2] Bennett C H, Brassard G and Mermin N D 1992 Phys. Rev. Lett. 168 557
[3] Cirac J I and Zoller P 1995 Phys. Rev. Lett. 74 4091
[4] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[5] Zheng S B 2010 Chin. Phys. B 19 044204
[6] Lin L H 2009 Chin. Phys. B 18 0588
[7] Phoenix S J D and Kinght P L 1991 Phys. Rev. A 44 6023
[8] Knoll L 1995 Phys.Rev. A 51 1622
[9] Vidal G and Wemer R F 2004 Phys. Rev. A 65 032314
[10] Wei T C, Nemoto K, Galdbart P M, Kwiat P G, Munro W J and Verstracte F 2003 Phys. Rev. A 67 022110
[11] Gerry C C and Ghosh H H 1997 Phys. Lett. A 229 17
[12] Yang C P and Guo G C 1999 Phys. Lett. A 255 129
[13] Wu H Z and Su W J 2007 Chin. Phys. 16 106
[14] Ye S Y 2006 Commun. Theor. Phys (Beijing, China) 46 1065
[15] Zhou Y, Zhang Y J and Xia Y J 2007 Acta Optica Sinica bf 27 1122
[16] Akhtarshenas S J and Farsi M 2007 quant-ph/0702101V1
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[5] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[6] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[7] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[12] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[13] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[14] Bright 547-dimensional Hilbert-space entangled resource in 28-pair modes biphoton frequency comb from a reconfigurable silicon microring resonator
Qilin Zheng(郑骑林), Jiacheng Liu(刘嘉成), Chao Wu(吴超), Shichuan Xue(薛诗川), Pingyu Zhu(朱枰谕), Yang Wang(王洋), Xinyao Yu(于馨瑶), Miaomiao Yu(余苗苗), Mingtang Deng(邓明堂), Junjie Wu(吴俊杰), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(2): 024206.
[15] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
No Suggested Reading articles found!