Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 027503    DOI: 10.1088/1674-1056/20/2/027503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Study of NiCuZn ferrite powders and films prepared by sol–gel method

Gao Liang-Qiu(高良秋),Yu Guo-Jian(于国建), Wang Ying(王颖),and Wei Fu-Lin(魏福林)
Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 China
Abstract  This paper reports that a series of NiCuZn ferrite powders and films are prepared by using sol–gel method. The effects of raw material composition and the calcinate temperature on magnetic properties of them are investigated. The NiCuZn ferrite powders are prepared by the self-propagating high-temperature synthesis method and subsequently heated at 700℃ ~1000℃. The results show that NiCuZn ferrite powders with single spinel phase can be formed after heat-treating at 750. Powders obtained from Ni0.4Cu0.2Zn0.4Fe1.9O4 gel have better magnetic properties than those from gels with other composition. After heat-treating at 900℃ for 3 h, coercivity Hc and saturation magnetization Ms are 9.7 Oe (1 Oe = 80 A/m) and 72.4 emu/g, respectively. Different from the powders, NiCuZn films produced on Si (100) from the Ni0.4Cu0.2Zn0.4Fe2O4 gel formed at room temperature possess high properties. When heat-treating condition is around 600℃ for 6 min, samples with low Hc and high Ms will be obtained. The minimal Hc is 16.7 Oe and Ms is about 300 emu/cm3. In comparison with the films prepared through long-time heat treating, the films prepared through short heat-treating time exhibits better soft magnetic properties.
Keywords:  sol–gel      NiCuZn ferrite      powder      film  
Received:  09 August 2010      Revised:  28 September 2010      Accepted manuscript online: 
PACS:  75.70.Ak (Magnetic properties of monolayers and thin films)  
  82.70.Gg (Gels and sols)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61003041) and the Fundamental Research Funds for the Central Universities (Grant No. lzujbky-2010-81).

Cite this article: 

Gao Liang-Qiu(高良秋), Yu Guo-Jian(于国建), Wang Ying(王颖), and Wei Fu-Lin(魏福林) Study of NiCuZn ferrite powders and films prepared by sol–gel method 2011 Chin. Phys. B 20 027503

[1] Liu F, Chen Y, Ren T L, Wang A Z, Jun Yu and Liu L T 2007 J. Magn. Magn. Mater. 309 75
[2] Yue L H, Li Y, Han J C and He X D 2004 Mater. Sic. Technol. 12 122
[3] Yan S S 2000 Fundamentals of Solid State Physics (Beijing: Peking University Press) pp. 348, 349
[4] Robert C O'handley (translated by Zhou Y Q) 2002 Modern Magnetic Materials Principle and Applications (Beijing: Chemical Industry Press) pp. 606--656 (in Chinese)
[5] Niu Q S, Jia H S and Xu B S 2008 Journal of North University of China (Natural Science Edition) 29 453 (in Chinese)
[6] Wang L X, Bai J M, Li Z H, Cao J W, Wei F L and Yang Z 2008 Appl. Mater. Sci. 205 2453
[7] Li Y, Zhao J P, He X D and Han J C 2002 Journal of Functional Materials 33 379 (in Chinese)
[8] Löffler J F, Braun H B, Wagner W, Kostorz G and Wiedenmann A 2001 Mater. Sci. Eng. A 527 6119
[1] Cascade excitation of vortex motion and reentrant superconductivity in flexible Nb thin films
Liping Zhang(张丽萍), Zuyu Xu(徐祖雨), Xiaojie Li(黎晓杰), Xu Zhang(张旭), Mingyang Qin(秦明阳), Ruozhou Zhang(张若舟), Juan Xu(徐娟), Wenxin Cheng(程文欣), Jie Yuan(袁洁), Huabing Wang(王华兵), Alejandro V. Silhanek, Beiyi Zhu(朱北沂), Jun Miao(苗君), and Kui Jin(金魁). Chin. Phys. B, 2023, 32(4): 047302.
[2] Flux pinning evolution in multilayer Pb/Ge/Pb/Ge/Pb superconducting systems
Li-Xin Gao(高礼鑫), Xiao-Ke Zhang(张晓珂), An-Lei Zhang(张安蕾), Qi-Ling Xiao(肖祁陵), Fei Chen(陈飞), and Jun-Yi Ge(葛军饴). Chin. Phys. B, 2023, 32(3): 037402.
[3] Effect of thickness of antimony selenide film on its photoelectric properties and microstructure
Xin-Li Liu(刘欣丽), Yue-Fei Weng(翁月飞), Ning Mao(毛宁), Pei-Qing Zhang(张培晴), Chang-Gui Lin(林常规), Xiang Shen(沈祥), Shi-Xun Dai(戴世勋), and Bao-An Song(宋宝安). Chin. Phys. B, 2023, 32(2): 027802.
[4] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[5] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[6] Optical and electrical properties of BaSnO3 and In2O3 mixed transparent conductive films deposited by filtered cathodic vacuum arc technique at room temperature
Jian-Ke Yao(姚建可) and Wen-Sen Zhong(钟文森). Chin. Phys. B, 2023, 32(1): 018101.
[7] Erratum to “Accurate determination of film thickness by low-angle x-ray reflection”
Ming Xu(徐明), Tao Yang(杨涛), Wenxue Yu(于文学), Ning Yang(杨宁), Cuixiu Liu(刘翠秀), Zhenhong Mai(麦振洪), Wuyan Lai(赖武彦), and Kun Tao(陶琨). Chin. Phys. B, 2022, 31(9): 099901.
[8] Efficiently enhanced energy storage performance of Ba2Bi4Ti5O18 film by co-doping Fe3+ and Ta5+ ion with larger radius
Qiong Wu(吴琼), Lei Zhao(赵雷), Xinghao Chen(陈兴豪), and Shifeng Zhao(赵世峰). Chin. Phys. B, 2022, 31(9): 097701.
[9] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[10] Wake-up effect in Hf0.4Zr0.6O2 ferroelectric thin-film capacitors under a cycling electric field
Yilin Li(李屹林), Hui Zhu(朱慧), Rui Li(李锐), Jie Liu(柳杰), Jinjuan Xiang(项金娟), Na Xie(解娜), Zeng Huang(黄增), Zhixuan Fang(方志轩), Xing Liu(刘行), and Lixing Zhou(周丽星). Chin. Phys. B, 2022, 31(8): 088502.
[11] Degradation mechanisms for a-InGaZnO thin-film transistors functioning under simultaneous DC gate and drain biases
Tianyuan Song(宋天源), Dongli Zhang(张冬利), Mingxiang Wang(王明湘), and Qi Shan(单奇). Chin. Phys. B, 2022, 31(8): 088101.
[12] Vacuum current-carrying tribological behavior of MoS2-Ti films with different conductivities
Lu-Lu Pei(裴露露), Peng-Fei Ju(鞠鹏飞), Li Ji(吉利), Hong-Xuan Li(李红轩),Xiao-Hong Liu(刘晓红), Hui-Di Zhou(周惠娣), and Jian-Min Chen(陈建敏). Chin. Phys. B, 2022, 31(6): 066201.
[13] Influences of Marangoni convection and variable magnetic field on hybrid nanofluid thin-film flow past a stretching surface
Noor Wali Khan, Arshad Khan, Muhammad Usman, Taza Gul, Abir Mouldi, and Ameni Brahmia. Chin. Phys. B, 2022, 31(6): 064403.
[14] Structure, phase evolution and properties of Ta films deposited using hybrid high-power pulsed and DC magnetron co-sputtering
Min Huang(黄敏), Yan-Song Liu(刘艳松), Zhi-Bing He(何智兵), and Yong Yi(易勇). Chin. Phys. B, 2022, 31(6): 066101.
[15] Numerical simulation of two droplets impacting upon a dynamic liquid film
Quan-Yuan Zeng(曾全元), Xiao-Hua Zhang(张小华), and Dao-Bin Ji(纪道斌). Chin. Phys. B, 2022, 31(4): 046801.
No Suggested Reading articles found!