Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 027301    DOI: 10.1088/1674-1056/20/2/027301
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thermopower in parallel double quantum dots with Rashba spin–orbit interaction

Xue Hui-Jie(薛惠杰)a)b), Lü Tian-Quan(吕天全) a)†, Zhang Hong-Chen(张红晨)c), Yin Hai-Tao(尹海涛)b), Cui Lian(崔莲)a), and He Ze-Long(贺泽龙)a)
a Department of Physics, Center for Condensed Matter Science and Technology, Harbin Institute of Technology, Harbin 150001, China; b Heilongjiang Key Laboratory for Low Dimensional and Mesoscopic Physics, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China; c Space Materials and Environment Engineering Laboratory, Harbin Institute of Technology, Harbin 150001, China
Abstract  Based on the Green's function technique and the equation of motion approach, this paper theoretically studies the thermoelectric effect in parallel coupled double quantum dots (DQDs), in which Rashba spin–orbit interaction is taken into account. Rashba spin–orbit interaction contributions, even in a magnetic field, are exhibited obviously in the double quantum dots system for the thermoelectric effect. The periodic oscillation of thermopower can be controlled by tunning the Rashba spin–orbit interaction induced phase. The interesting spin-dependent thermoelectric effects will arise which has important influence on thermoelectric properties of the studied system.
Keywords:  quantum dot      thermopower      Rashba spin–orbit interaction      spin-dependent inter-dot coupling  
Received:  22 June 2010      Revised:  08 September 2010      Accepted manuscript online: 
PACS:  73.21.La (Quantum dots)  
  72.25.Dc (Spin polarized transport in semiconductors)  
  72.20.Pa (Thermoelectric and thermomagnetic effects)  
Fund: Project supported by the Scientific Research Fund of Heilongjiang Provincial Education Department of China (Grant No. 11551145).

Cite this article: 

Xue Hui-Jie(薛惠杰), Lü Tian-Quan(吕天全), Zhang Hong-Chen(张红晨), Yin Hai-Tao(尹海涛), Cui Lian(崔莲), and He Ze-Long(贺泽龙) Thermopower in parallel double quantum dots with Rashba spin–orbit interaction 2011 Chin. Phys. B 20 027301

[1] Beenakker C W J and Staring A A M 1992 Phys. Rev. B 46 9667
[2] Kim T S and Hershfield S 2001 Phys. Rev. B 63 245326
[3] Kim T S and Hershfield S 2002 Phys. Rev. Lett. 88 136601
[4] Kim T S and Hershfield S 2003 Phys. Rev. B 67 165313
[5] Krawiec M and Wysoki'nski K I 2006 Phys. Rev. B 73 075307
[6] Krawiec M and Wysoki'nski K I 2006 Physica B 378 933
[7] Krawiec M and Wysoki'nski K I 2007 Phys. Rev. B 75 155330
[8] Krawiec M 2008 Acta. Phys. Pol. A 114 115
[9] Francoa R, Silva-Valencia J and Figueira M S 2008 J. Magn. Magn. Mater. 320 242
[10] Francoa R, Silva-Valencia J and Figueira M S 2008 J. Appl. Phys. 103 07B726
[11] Zhang Z Y 2007 J. Phys.: Condens. Matter 19 86214
[12] Murakami S, Nagaosa N and Zhang S C 2003 Science 301 1348
[13] Kato Y K, Myers R C, Gossard A C and Awschalom D D 2004 Science 306 1910
[14] Datta S and Das B 1990 Appl. Phys. Lett. 56 665
[15] Wang J M, Wang R and Liang J Q 2007 Chin. Phys. 16 2057
[16] Ying Y, Jin G J and Ma Y Q 2009 J. Phys.: Condens. Matter 21 275801
[17] Chi F and Li S S 2006 J. Appl. Phys. 100 113703
[18] Chi F, Liu J L and Sun L L 2007 J. Appl. Phys. 101 093704
[19] Chi F and Zheng J 2008 Appl. Phys. Lett. 92 062106
[20] Yin H T, L"u T Q, Sun P N, Liu X J and Xue H J 2009 Phys. Lett. A 373 285
[21] Hou T, Wu S Q, Bi A H, Yang F B, Chen J F and Fan M 2009 Chin. Phys. B 18 783
[22] Wu S Q, Hou T, Zhao G P and Yu W L 2010 Chin. Phys. B 19 047202
[23] Huang R, Wu S Q and Yan C H 2010 Chin. Phys. B 19 077302
[24] Sun Q F, Wang J and Guo H 2005 Phys. Rev. B 71 165310
[25] Sun Q F and Xie X C 2006 Phys. Rev. B 73 235301
[26] Cho S Y and McKenzie R H 2005 Phys. Rev. B 71 045317
[27] David K F and Stephen M G 1997 Transport in Nanostructures (Cambridge: Cambridge University Press) p. 431
[28] Mahan G D 1981 Many-Particle Physics (New York: Plenum) p. 179
[29] Lu H Z, L"u R and Zhu B F 2005 Phys. Rev. B 71 235320
[30] Sakano R, Kita T and Kawakami N 2007 J. Phys. Soc. Jpn. 76 074709
[31] Sakano R and Kawakami N 2007 J. Magn. Magn. Mater. 310 1136 endfootnotesize
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[7] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[8] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[9] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[10] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[11] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
No Suggested Reading articles found!