Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 024209    DOI: 10.1088/1674-1056/20/2/024209
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Improved high birefringence photonic crystal fibres with dispersion flattened and single mode operation

Fu Bo(付博), Li Shu-Guang(李曙光), Yao Yan-Yan(姚艳艳), Zhang Lei(张磊), and Zhang Mei-Yan(张美艳)
Key Laboratory of Metastable Materials Science and Technology, College of Science, Yanshan University, Qinhuangdao 066004, China
Abstract  A kind of improved high birefringence photonic crystal fibre (PCF) is proposed in this paper. The characteristics of birefringence, dispersion and leakage loss are studied by the multipole method. Numerical results show that the improved PCF possesses the properties of a flat dispersion and single mode operation. Moreover, with the operating wavelength $\lambda$ = 1.55μm, the modal birefringence increases greatly in comparison with that of the original PCF, and the leakage loss is about 104 times smaller than that of the original PCF because the modification gives rise to the strong confinement of guided modes. It is expected that the improved PCF can be used as high birefringence and dispersion flattened fibres.
Keywords:  photonic crystal fibres      birefringence      nonlinear optics  
Received:  10 February 2010      Revised:  09 August 2010      Accepted manuscript online: 
PACS:  42.65.-k (Nonlinear optics)  
  42.81.Gs (Birefringence, polarization)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10874145), Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20091333110010), the Natural Science Foundation of Hebei Province, China (Grant No. F2009000481), and the Natural Science Foundation for Postdoctoral Scientists of China (Grant Nos. 20080440014 and 200902046).

Cite this article: 

Fu Bo(付博), Li Shu-Guang(李曙光), Yao Yan-Yan(姚艳艳), Zhang Lei(张磊), and Zhang Mei-Yan(张美艳) Improved high birefringence photonic crystal fibres with dispersion flattened and single mode operation 2011 Chin. Phys. B 20 024209

[1] Russell J 2003 Science 299 358
[2] Knight J C 2003 Nature 424 847
[3] Lu J H, Meng Z M, Liu H Y, Feng T H, Dai Q F, Wu L J, Guo Q, Hu W and Lan S 2009 Chin. Phys. B 18 4333
[4] Zhang M Y, Li S G, Yao Y Y, Fu B and Zhang L 2010 Chin. Phys. B 19 047103
[5] Wang H L, Leng Y X and Xu Z Z 2009 Chin. Phys. B 18 5375
[6] Fu B, Li S G, Yao Y Y, Zhang L, Zhang M Y and Liu S Y 2009 Acta Phys. Sin. 58 7708 (in Chinese)
[7] Yuan J H, Sang X Z, Yu C X, Xin X J, Li S G, Zhou G Y and Hou L T 2010 Chin. Phys. B 19 074218
[8] Chick B J, Chon J W M and Gu M 2008 Opt. Express 16 20099
[9] Khan K R, Wu T X, Christodoulides D N and Stegeman G I 2008 Opt. Express 16 9417
[10] Yue Y, Kai G Y, Wang Z, Sun T T, Jin L, Lu Y F, Zhang C S, Liu J G, Li Y, Liu Y G and Yuan S Z 2006 IEEE Photon. Technol. Lett. 18 2638
[11] Zografopoulos D C, Kriezis E E and Tsiboukis T D 2006 Opt. Express 14 914
[12] Chen X, Li M J, Koh J and Nolan D A 2008 Opt. Express 16 12060
[13] Her T H 2008 Opt. Express 16 7197
[14] Chen M Y 2007 Opt. Express 15 12498
[15] G'er^ome F, Auguste J L and Blondy J M 2005 Opt. Lett. 29 2725
[16] Huttunen A and Torma P 2005 Opt. Express 13 627
[17] Kocabas A, Ertas G, Senlik S S and Aydinli A 2008 Opt. Express 16 12469
[18] Li S G, Li Y G, Zhang H G, Liu S Y, Zhou G Y, Han Y and Hou L T 2007 Appl. Phys. B 87 71
[19] Kim S, Kee C S, Ko D K, Lee J and Oh K J 2006 Korean Phys. Soc. 49 1434
[20] Chesini G, Cordeiro C M B, Matos de C J S, Fokine M, Carvalho I C S and Knight J C 2009 Opt. Express 17 1660
[21] Kim S, Kee C S and Lee C G 2009 Opt. Express 17 7952
[22] Li S G, Zhang W, Wei Z Y, Zhou G Y and Hou L T 2009 Chin. Phys. B 18 1996
[23] Fang X H, Hu M L, Li Y F, Chai L and Wang Q Y 2009 Acta Phys. Sin. 58 2495 (in Chinese)
[24] Oikawa Y, Hasegawa H, Suzuki K, Inoue Y, Hirooka T and Nakazawa M 2007 IEEE Photon. Technol. Lett. 19 613
[25] Yamamoto T, Kubota H and Kawanishi S 2003 Opt. Express 11 1537
[26] Saitoh K and Koshiba M 2003 Opt. Express 11 843
[27] Saitoh K, Florous N and Koshiba M 2005 Opt. Express 13 8365
[28] Varshney S K, Fujisawa T, Saitoh K and Koshiba M 2006 Opt. Express 14 3528
[29] White T P, Kuhlmey B T, McPhedran R C, Maystre D, Renversez G, Sterke de C M and Botten L C 2002 J. Opt. Soc. Am. B 19 2322
[30] Kuhlmey B T, White T P, Renversez G, Maystre D, Botten L C, Sterke de C M and McPhedran R C 2002 J. Opt. Soc. Am. B 19 2331 endfootnotesize
[1] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[2] Scanning the optical characteristics of lead-free cesium titanium bromide double perovskite nanocrystals
Chenxi Yu(于晨曦), Long Gao(高龙), Wentong Li(李文彤), Qian Wang(王倩), Meng Wang(王萌), and Jiaqi Zhang(张佳旗). Chin. Phys. B, 2022, 31(5): 054218.
[3] Noncollinear phase-matching geometries in ultra-broadband quasi-parametric amplification
Ji Wang(王佶), Yanqing Zheng(郑燕青), and Yunlin Chen(陈云琳). Chin. Phys. B, 2022, 31(5): 054213.
[4] A simple and comprehensive electromagnetic theory uncovering complete picture of light transport in birefringent crystals
Jianbo Pan(潘剑波), Jianfeng Chen(陈剑锋), Lihong Hong(洪丽红), Li Long(龙利), and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(5): 054201.
[5] High-order harmonic generations in tilted Weyl semimetals
Zi-Yuan Li(李子元), Qi Li(李骐), and Zhou Li(李舟). Chin. Phys. B, 2022, 31(12): 124204.
[6] Up-conversion detection of mid-infrared light carrying orbital angular momentum
Zheng Ge(葛正), Chen Yang(杨琛), Yin-Hai Li(李银海), Yan Li(李岩), Shi-Kai Liu(刘世凯), Su-Jian Niu(牛素俭), Zhi-Yuan Zhou(周志远), and Bao-Sen Shi(史保森). Chin. Phys. B, 2022, 31(10): 104210.
[7] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
[8] Bandwidth-tunable silicon nitride microring resonators
Jiacheng Liu(刘嘉成), Chao Wu(吴超), Gongyu Xia(夏功榆), Qilin Zheng(郑骑林), Zhihong Zhu(朱志宏), and Ping Xu(徐平). Chin. Phys. B, 2022, 31(1): 014201.
[9] A low-threshold multiwavelength Brillouin fiber laser with double-frequency spacing based on a small-core fiber
Lu-Lu Xu(徐路路), Ying-Ying Wang(王莹莹), Li Jiang(江丽), Pei-Long Yang(杨佩龙), Lei Zhang(张磊), and Shi-Xun Dai(戴世勋). Chin. Phys. B, 2021, 30(8): 084210.
[10] Low-threshold bistable reflection assisted by oscillating wave interaction with Kerr nonlinear medium
Yingcong Zhang(张颖聪), Wenjuan Cai(蔡文娟), Xianping Wang(王贤平), Wen Yuan(袁文), Cheng Yin(殷澄), Jun Li(李俊), Haimei Luo(罗海梅), and Minghuang Sang(桑明煌). Chin. Phys. B, 2021, 30(8): 084203.
[11] Third-order nonlinear optical properties of graphene composites: A review
Meng Shang(尚萌), Pei-Ling Li(李培玲), Yu-Hua Wang(王玉华), and Jing-Wei Luo(罗经纬). Chin. Phys. B, 2021, 30(8): 080703.
[12] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[13] Polarization manipulation of bright-dark vector bisolitons
Yan Zhou(周延), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2021, 30(3): 034208.
[14] A concise review of Rydberg atom based quantum computation and quantum simulation
Xiaoling Wu(吴晓凌), Xinhui Liang(梁昕晖), Yaoqi Tian(田曜齐), Fan Yang(杨帆), Cheng Chen(陈丞), Yong-Chun Liu(刘永椿), Meng Khoon Tey(郑盟锟), and Li You(尤力). Chin. Phys. B, 2021, 30(2): 020305.
[15] Recent advances in generation of terahertz vortex beams andtheir applications
Honggeng Wang(王弘耿), Qiying Song(宋其迎), Yi Cai(蔡懿), Qinggang Lin(林庆钢), Xiaowei Lu(陆小微), Huangcheng Shangguan(上官煌城), Yuexia Ai(艾月霞), Shixiang Xu(徐世祥). Chin. Phys. B, 2020, 29(9): 097404.
No Suggested Reading articles found!