Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 020404    DOI: 10.1088/1674-1056/20/2/020404
GENERAL Prev   Next  

Temperature and thermodynamic geometry of the Kerr–Sen black hole

Lan Ming-Jian(兰明建)
College of Computer Science, Chongqing Technology and Business University, Chongqing 400067, China
Abstract  This paper studies the thermodynamic properties of the Kerr–Sen black hole from the viewpoint of geometry. It calculates the temperature and heat capacity of the black hole, Weinhold metric and Ruppeiner metric are also obtained respectively. It finds that they are both curved and the curvature scalar of Weinhold curvature implies no information about the phase transition while the Ruppeiner one does. But they both carry no information about the second-order phase transition point reproduced from the capacity. Besides, the Legendre invariant metric of the Kerr–Sen black hole has been discussed and its scalar curvature gives the information about the second-order phase transition point.
Keywords:  black hole      thermodynamic geometry      phase transition  
Received:  10 August 2010      Revised:  31 August 2010      Accepted manuscript online: 
PACS:  04.70.Dy (Quantum aspects of black holes, evaporation, thermodynamics)  
  04.20.-q (Classical general relativity)  
Fund: Project supported by the Scientific and Technological Foundation of Chongqing Municipal Education Commission of China (Grant Nos. KJ 090731 and KJ100706).

Cite this article: 

Lan Ming-Jian(兰明建) Temperature and thermodynamic geometry of the Kerr–Sen black hole 2011 Chin. Phys. B 20 020404

[1] Bekenstein J D 1972 Lett. Nuovo Cimento 4 737
[2] Bekenstein J D 1973 Phys. Rev. D 7 2333
[3] Hawking S W 1975 Commun. Math. Phys. 43 199
[4] Parikh M K and Wilczek F 2000 Phys. Rev. Lett. 85 5042
[5] Zhang J Y and Zhao Z 2006 Acta Phys. Sin. 55 3796 (in Chinese)
[6] Liu W B 2007 Acta Phys. Sin. 56 6164 (in Chinese)
[7] Yang S Z and Chen D Y 2008 Chin. Phys. B 17 817
[8] Han Y W, Bao Z Q and Hong Y 2009 Chin. Phys. B 18 62
[9] Weinhold F 1975 J. Chem. Phys. 63 2479
[10] Ruppeiner G 1979 Phys. Rev. A 20 1608
[11] Salamon P, Ihrig E and Berry R S 1983 J. Math. Phys. 24 2515
[12] Mrugala R, Nulton J D, Schon J C and Salamon P 1990 Phys. Rev. A 41 3156
[13] Alvarez J L, Quevedo H and Sanchez A 2008 Phys. Rev. D 77 084004
[14] Quevedo H and Sanchez A 2008 JHEP 0809 034
[15] Quevedo H and Sanchez A 2009 Phys. Rev. D 79 087504
[16] Ruppeiner G 1995 Rev. Mod. Phys. 67 605
[17] Ruppeiner G 2008 Phys. Rev. D 78 024016
[18] Ferrara S, Gibbons G W and Kallosh R 1997 Nucl. Phys. B 500 75
[19] Cai R G and Cho J H 1999 Phys. Rev. D 60 067502
[20] Aman J E, Bengtsson I and Pidokrajt N 2003 Gen. Rel. Grav. 35 1733
[21] Aman J E, Bengtsson I and Pidokrajt N 2006 Gen. Rel. Grav. 38 1305
[22] Aman J E, Bedford J, Grumiller D, Pidokrajt N and Ward J 2007 J. Phys. Conf. Ser. 66 012007
[23] Aman J E, Pidokrajt N and Ward J 2008 EAS Publ. Ser. 30 279
[24] Medved A J M 2008 Mod. Phys. Lett. A 23 2149
[25] Myung Y S, Kim Y W and Park Y J 2008 Phys. Lett. B 663 342
[26] Myung Y S, Kim Y W and Park Y J 2008 Phys. Rev. D 78 084002
[27] Mirza B and Zamaninasab M 2007 JHEP 0706 059
[28] Shen J Y, Cai R G, Wang B and Su R K 2007 Int. J. Mod. Phys. A 22 11
[29] Cai R G, Cao L M and Ohta N 2009 Phys. Lett. B 679 504
[30] Han Y W and Zhang J Y 2010 Phys. Lett. B 692 74
[31] Sen A 1992 Phys. Rev. Lett. 69 1006
[32] Wu S Q and Cai X 2003 J. Math. Phys. 44 1084 endfootnotesize
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[3] Liquid-liquid phase transition in confined liquid titanium
Di Zhang(张迪), Yunrui Duan(段云瑞), Peiru Zheng(郑培儒), Yingjie Ma(马英杰), Junping Qian(钱俊平), Zhichao Li(李志超), Jian Huang(黄建), Yanyan Jiang(蒋妍彦), and Hui Li(李辉). Chin. Phys. B, 2023, 32(2): 026801.
[4] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[5] Prediction of flexoelectricity in BaTiO3 using molecular dynamics simulations
Long Zhou(周龙), Xu-Long Zhang(张旭龙), Yu-Ying Cao(曹玉莹), Fu Zheng(郑富), Hua Gao(高华), Hong-Fei Liu(刘红飞), and Zhi Ma(马治). Chin. Phys. B, 2023, 32(1): 017701.
[6] The shadow and observation appearance of black hole surrounded by the dust field in Rastall theory
Xuan-Ran Zhu(朱轩然), Yun-Xian Chen(陈芸仙), Ping-Hui Mou(牟平辉), and Ke-Jian He(何柯腱). Chin. Phys. B, 2023, 32(1): 010401.
[7] Configurational entropy-induced phase transition in spinel LiMn2O4
Wei Hu(胡伟), Wen-Wei Luo(罗文崴), Mu-Sheng Wu(吴木生), Bo Xu(徐波), and Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2022, 31(9): 098202.
[8] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[9] Characterization of topological phase of superlattices in superconducting circuits
Jianfei Chen(陈健菲), Chaohua Wu(吴超华), Jingtao Fan(樊景涛), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(8): 088501.
[10] Hard-core Hall tube in superconducting circuits
Xin Guan(关欣), Gang Chen(陈刚), Jing Pan(潘婧), and Zhi-Guo Gui(桂志国). Chin. Phys. B, 2022, 31(8): 080302.
[11] Exchange-coupling-induced fourfold magnetic anisotropy in CoFeB/FeRh bilayer grown on SrTiO3(001)
Qingrong Shao(邵倾蓉), Jing Meng(孟婧), Xiaoyan Zhu(朱晓艳), Yali Xie(谢亚丽), Wenjuan Cheng(程文娟), Dongmei Jiang(蒋冬梅), Yang Xu(徐杨), Tian Shang(商恬), and Qingfeng Zhan(詹清峰). Chin. Phys. B, 2022, 31(8): 087503.
[12] Universal order-parameter and quantum phase transition for two-dimensional q-state quantum Potts model
Yan-Wei Dai(代艳伟), Sheng-Hao Li(李生好), and Xi-Hao Chen(陈西浩). Chin. Phys. B, 2022, 31(7): 070502.
[13] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[14] Structural evolution and bandgap modulation of layered β-GeSe2 single crystal under high pressure
Hengli Xie(谢恒立), Jiaxiang Wang(王家祥), Lingrui Wang(王玲瑞), Yong Yan(闫勇), Juan Guo(郭娟), Qilong Gao(高其龙), Mingju Chao(晁明举), Erjun Liang(梁二军), and Xiao Ren(任霄). Chin. Phys. B, 2022, 31(7): 076101.
[15] Topological phase transition in cavity optomechanical system with periodical modulation
Zhi-Xu Zhang(张志旭), Lu Qi(祁鲁), Wen-Xue Cui(崔文学), Shou Zhang(张寿), and Hong-Fu Wang(王洪福). Chin. Phys. B, 2022, 31(7): 070301.
No Suggested Reading articles found!