Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 020303    DOI: 10.1088/1674-1056/20/2/020303
GENERAL Prev   Next  

Dark states and Aharonov–Bohm oscillations in multi-quantum-dot systems

Wang Qiong(王琼), Liu Jun(刘军), Tang Ning(唐宁) and Zeng Hao-Sheng(曾浩生)
Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, and Department of Physics, Hunan Normal University, Changsha 410081, China
Abstract  We study the formation of dark states and the Aharonov–Bohm effect in symmetrically/asymmetrically coupled three- and four-quantum-dot systems. It is found that without a transverse magnetic field, destructive interference can trap an electron in a dark state. However, the introduction of a transverse magnetic field can disrupt the dark state, giving rise to oscillation in current. For symmetrically structured quantum-dot systems, the oscillation has a period of one flux quanta. But for asymmetrically structured dot systems, the period of oscillation is halved. In addition, the dephasing due to charge noise also blocks the formation of dark states, while it does not change the period of oscillation.
Keywords:  quantum dot      dark state      Aharonov–Bohm effect  
Received:  12 June 2010      Revised:  08 October 2010      Accepted manuscript online: 
PACS:  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  73.23.Hk (Coulomb blockade; single-electron tunneling)  
  73.63.Kv (Quantum dots)  
  85.35.Ds (Quantum interference devices)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2007CB925204), the National Natural Science Foundation of China (Grant No. 10775048), the Key Project of the Chinese Ministry of Education (Grant No. 206103), and the Construct Program of the National Key Discipline.

Cite this article: 

Wang Qiong(王琼), Liu Jun(刘军), Tang Ning(唐宁) and Zeng Hao-Sheng(曾浩生) Dark states and Aharonov–Bohm oscillations in multi-quantum-dot systems 2011 Chin. Phys. B 20 020303

[1] Arimondo E 1996 Prog. Opt. 35 257
[2] Harris S E 1997 Phys. Today 50 36
[3] Marangos J P 1998 J. Mod. Opt. 45 471
[4] Lukin M D and Immamoglu A 2001 Nature 413 273
[5] Jia W Z and Wang S J 2009 Chin. Phys. B 18 2282
[6] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[7] Bergmann K, Theuer H and Shore B W 1998 Rev. Mod. Phys. 70 1003
[8] Lukin M D, Yelin S F, Fleischhauer M and Scully M O 1999 Phys. Rev. A 60 3225
[9] Fleischhauer M and Lukin M D 2000 Phys. Rev. Lett. 84 5094
[10] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[11] Meng S Y, Wu W, Liu B, Ye D F and Fu L B 2009 Chin. Phys. B 18 3844
[12] Harris S E 1989 Phys. Rev. Lett. 62 1033
[13] Scully M O, Zhu S Y and Gavrielides A 1989 Phys. Rev. Lett. 62 2813
[14] Zibrov A S, Lukin M D, Nikonov D E, Hollberg L, Scully M O, Velichansky V L and Robinson H G 1995 Phys. Rev. Lett. 75 1499
[15] Hau L, Harris S, Dutton Z and Behroozi C 1999 Nature 397 594
[16] Budker D, Kimball D F, Rochester S M and Yashchuk V V 1999 Phys. Rev. Lett. 83 1767
[17] Liu C, Dutton Z, Behroozi C H and Hau L V 2001 Nature 409 490
[18] Phillips D F, Fleischhauer A, Mair A, Walsworth R L and Lukin M D 2001 Phys. Rev. Lett. 86 783
[19] Aharonov Y and Bohm D 1959 Phys. Rev. 115 485
[20] Pereyra P and Ulloa S E 2000 Phys. Rev. B 61 2128
[21] Hu H, Zhu J L, Li D J and Xiong J J 2001 Phys. Rev. B 63 195307
[22] Sun K W and Xiong S J 2004 Chin. Phys. 13 95
[23] Zhou B, Wu S Q, Sun W L and Zhou X L 2004 Chin. Phys. 13 225
[24] Bayer M, Korkusinski M, Hawrylak P, Gutbrod T, Michel M and Forchel A 2003 Phys. Rev. Lett. 90 186801
[25] Ribeiro E, Govorov A O, Carvalho W and Medeiros Ribeiro G 2004 Phys. Rev. Lett. 92 126402
[26] Yang S, Song Z and Sun C P 2006 Phys. Rev. A 73 022317
[27] Emary C 2007 Phys. Rev. B 76 245319 endfootnotesize
[1] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[2] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[3] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[4] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[5] Electrical manipulation of a hole ‘spin’-orbit qubit in nanowire quantum dot: The nontrivial magnetic field effects
Rui Li(李睿) and Hang Zhang(张航). Chin. Phys. B, 2023, 32(3): 030308.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] High-quality CdS quantum dots sensitized ZnO nanotube array films for superior photoelectrochemical performance
Qian-Qian Gong(宫倩倩), Yun-Long Zhao(赵云龙), Qi Zhang(张奇), Chun-Yong Hu(胡春永), Teng-Fei Liu(刘腾飞), Hai-Feng Zhang(张海峰), Guang-Chao Yin(尹广超), and Mei-Ling Sun(孙美玲). Chin. Phys. B, 2022, 31(9): 098103.
[9] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[10] Dynamic transport characteristics of side-coupled double-quantum-impurity systems
Yi-Jie Wang(王一杰) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097305.
[11] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[12] Modeling and numerical simulation of electrical and optical characteristics of a quantum dot light-emitting diode based on the hopping mobility model: Influence of quantum dot concentration
Pezhman Sheykholeslami-Nasab, Mahdi Davoudi-Darareh, and Mohammad Hassan Yousefi. Chin. Phys. B, 2022, 31(6): 068504.
[13] Chiral splitting of Kondo peak in triangular triple quantum dot
Yi-Ming Liu(刘一铭), Yuan-Dong Wang(王援东), and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(5): 057201.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] High-fidelity quantum sensing of magnon excitations with a single electron spin in quantum dots
Le-Tian Zhu(朱乐天), Tao Tu(涂涛), Ao-Lin Guo(郭奥林), and Chuan-Feng Li(李传锋). Chin. Phys. B, 2022, 31(12): 120302.
No Suggested Reading articles found!