Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 127701    DOI: 10.1088/1674-1056/20/12/127701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The coexistence of ferroelectricity and ferromagnetism in Mn-doped BaTiO3 thin films

Ding Bin-Feng(丁斌峰)a)b)† and Zhou Sheng-Qiang(周生强)b)
a Department of Physics and Electronic Information, Langfang Teachers College, Langfang 065000, China; b State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
Abstract  

Due to the fault of the first author of the article entitled “The coexistence of ferroelectricity and ferromagnetism in Mn-doped BaTiO3 thin films”, published in Chinese Physics B, 2011, Vol. 20, Issue 12, Article No. 127701, has been found to copy from the article entitled “Decisive role of oxygen vacancy in ferroelectric versus ferromagnetic Mn-doped BaTiO3 thin films”, published in Journal of Applied Physics, 2011, Vol.109, Issue 8, article No. 084105. So the above article in Chinese Physics B has been withdrawn from the publication. [5 December 2011]

5-at% Mn-doped and undoped BaTiO3 thin films have been grown under different oxygen partial pressures by Pulsed Laser Deposition (PLD) on platinum-coated sapphire substrates. X-ray diffraction (XRD) measurements for all the thin films reveal a similar polycrystalline single-phase perovskite structure. Ferroelectricity is observed in the Mn-doped and undoped BaTiO3 thin films grown under relatively high oxygen partial pressure. Ferromagnetic coupling of the Mn dopant ions, on the other hand, is only seen in Mn-doped BaTiO3 thin films prepared under low oxygen partial pressure in a wide temperature range from 5 K to 300 K, and is attributed to the enhanced exchange coupling between Mn dopants and electrons at oxygen vacancies. Our results show that the leakage current is decreased with the doped Mn, but increases the dielectric loss and decreases the dielectric constant, and the ferroelectricity is impaired. To produce ferromagnetism, oxygen vacancies are necessary, which unfortunately increase the leakage current. This confirms that the mutual interplay between the ferroelectricity and ferromagnetism can be tuned by exchange coupling of the doped-Mn and oxygen vacancies in the BaTiO3 thin films.

Keywords:  ferroelectricity      ferromagnetism      platinum-coated  
Received:  18 June 2011      Revised:  16 August 2011      Accepted manuscript online: 
PACS:  77.80.-e (Ferroelectricity and antiferroelectricity)  
  75.50.Bb (Fe and its alloys)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 10875004 and 11005005) and the National Basic Research Program of China (Grant No. 2010CB832904).

Cite this article: 

Ding Bin-Feng(丁斌峰) and Zhou Sheng-Qiang(周生强) The coexistence of ferroelectricity and ferromagnetism in Mn-doped BaTiO3 thin films 2011 Chin. Phys. B 20 127701

[1] Vijatovic M M, Bobic J D and Stojanovic B D 2008 Sci. Sintering 40 155
[2] Cheng H F, Yeh M H, Liu K S and Lin I N 1993 Jpn. J. Appl. Phys. 32 5656
[3] Baniecki J D, Shioga T, Kurihara K and Kamehara N 2005 J. Appl. Phys. 97 114101
[4] Yanase N, Abe K, Fukushima N and Kawakubo T 1999 Jpn. J. Appl. Phys. 38 5305
[5] Choi K J, Biegalski M, Li Y L, Sharan A, Schubert J, Uecker R, Reiche P, Chen Y B, Pan X Q, Gopalan V, Chen L Q, Schlom D G and Eom C B 2004 Science 306 1005
[6] Izyumskaya N, Alivov Y, Cho S J and Rev C 2007 Solid State Mater. Sci. 32 111
[7] Wu S, Wang S, Chen L, Wang X and Mater J 2008 Sci. Mater. Electron 19 505
[8] Cole M W, Ngo E, Hirsch S, Okatan M and P S 2008 Appl. Phys. Lett. 92 072906
[9] Wang J, Neaton J B, Zheng H, Nagarajan V, Ogale S B, Liu B, Viehland D, Vaithyanathan V, Schlom D G, Waghmare U V, Spaldin N A, Rabe K M, Wuttig M and Ramesh R 2003 Science 299 1719
[10] Kimura T, Goto T, Shintani H, Lshizaka K, Arima T and Tokura Y 2003 Nature 426 55
[11] Hur N, Park S, Sharma P A, Ahn J S, Guha S and Cheong S W 2004 Nature 429 392
[12] Duan C G, Jaswal S S and Tsymbal E Y 2006 Phys. Rev. Lett. 97 047201
[13] Eerenstein W, Mathur N D and Scott J F 2006 Nature 442 759
[14] Ederer C and Spaldin N A 2005 Phys. Rev. B 71 060401
[15] Béa H, Bibes M, Barthélémy A, Bouzehouane K, Jacquet E, Khodan A, Contour J P, Fusil S, Wyczisk F, Forget A, Lebeugle D, Colson D and Viret M 2005 Appl. Phys. Lett. 87 072508
[16] Sosnowska I, Neumaier T P and Steichele E 1982 J. Phys. C: Solid State Phys. 15 4835
[17] Bai F, Wang J L, Wuttig M, Li J F, Wang N G, Pyatakov A P, Zvezdin A K, Cross L E and Viehland D 2005 Appl. Phys. Lett. 86 032511
[18] Nakayama H and Yoshida H K 2001 Jpn. J. Appl. Phys. 40 L1355
[19] Lee J S, Khim Z G, Park Y D, Norton D P, Theodoropoulou N A, Hebard A F, Budai F J, Boatner L A, Pearton S J and Wilson R G 2003 Solid-State Electron 47 2225
[20] Lin Y H, Zhang S, Deng C, Zhang Y, Wang X and Nan C W 2008 Appl. Phys. Lett. 92 112501
[21] Xu B, Yin K B, Lin J, Xia Y D, Wan X G, Yin J, Bai X J, Du J and Liu Z G 2009 Phys. Rev. B 79 134109
[22] Lin Y H, Yuan J, Zhang S, Zhang Y, Liu J, Wang Y and Nan C W 2009 Appl. Phys. Lett. 95 033105
[23] Tong X, Lin Y H, Zhang S, Wang Y and Nan C W 2008 Appl. Phys. Lett. 104 066108
[24] Mangalam R V K, Chakrabrati M, Sanyal D, Chakrabati A and Sundaresan A 2009 J. Phys.: Condens. Matter 21 445902
[25] Sawyer C B and Tower C H 1930 Phys. Rev. 35 269
[26] Lampert M A 1956 Phys. Rev. 103 1648
[27] Rose T L, Lelliher E M, Scoville A N and Stone S E 1984 J. Appl. Phys. 55 3706
[28] Takezawa Y, Kobayashi K, Nakasone F, Suzuki T, Mizuno Y and Imai H 2009 Jpn. J. Appl. Phys. 48 111408
[29] Eichel R A 2007 J. Electroceram. 19 9
[30] Wang S Y, Cheng B L, Wang C S, Dai S Y, Lu H B, Zhou Y L, Chen Z H and Yang G Z 2004 Appl. Phys. Lett. 84 4116
[31] Tao K, Hao Z, Xu B, Chen B, Miao J, Yang H and Zhao B R 2003 J. Appl. Phys. 94 4042
[32] Qi Y, Lu C, Zhang Q, Wang L, Chen F, Cheng C and Liu B 2008 J. Phys. D: Appl. Phys. 41 065407
[33] Chu J P, Mahalingam T, Liu C F and Wang S F 2007 J. Mater. Sci. 42 346
[34] Thomas R, Varadan V K, Komarneni S and Dube D C 2001 J. Appl. Phys. 90 1480
[35] Huang L M, Chen Z Y, Wilson J D, Banerjee S, Robinson R D, Herman I P, Laibowitz R and O'Brien S 2006 J. Appl. Phys. 100 034316
[36] Qiao L and Bi X 2009 J. Eur. Ceram. Soc. 29 1995
[37] Coey J M D, Venkatesan M and Fitzgerald C B 2005 Nat. Mater. 4 173
[38] Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
[39] Ederer C and Spaldin N A 2004 Nat. Mater. 3 849
[40] Li J J, Yu J, Li J, Wang M, Li Y B, Wu Y Y, Gao J X and Wang Y B 2010 Acta Phys. Sin. 59 1302 (in Chinese)
[41] Guo D Y, Li C, Wang C B, Shen Q, Zhang L M, Tu R and Goto T 2010 Acta Phys. Sin. 59 5772 (in Chinese)
[42] Zhao Q X, Ma J K, Geng B, Wei D Y, Guan L and Liu B T 2010 Acta Phys. Sin. 59 8042 (in Chinese)
[1] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[2] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[3] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[4] Dynamical signatures of the one-dimensional deconfined quantum critical point
Ning Xi(西宁) and Rong Yu(俞榕). Chin. Phys. B, 2022, 31(5): 057501.
[5] Strain-tuned magnetic properties in (Ga,Fe)Sb: First-principles study
Feng-Chun Pan(潘凤春), Xue-Ling Lin(林雪玲), and Xu-Ming Wang(王旭明). Chin. Phys. B, 2021, 30(9): 096105.
[6] Origin of itinerant ferromagnetism in two-dimensional Fe3GeTe2
Xi Chen(陈熙), Zheng-Zhe Lin(林正喆), and Li-Rong Cheng(程丽蓉). Chin. Phys. B, 2021, 30(4): 047502.
[7] Intrinsic two-dimensional multiferroicity in CrNCl2 monolayer
Wei Shen(沈威), Yuanhui Pan(潘远辉), Shengnan Shen(申胜男), Hui Li(李辉), Siyuan Nie(聂思媛), and Jie Mei(梅杰). Chin. Phys. B, 2021, 30(11): 117503.
[8] Irradiation behavior and recovery effect of ferroelectric properties of PZT thin films
Yu Zhao(赵瑜), Wen-Yue Zhao(赵文悦), Dan-Dan Ju(琚丹丹), Yue-Yue Yao(姚月月), Hao Wang(王豪), Cheng-Yue Sun(孙承月), Ya-Zhou Peng(彭亚洲), Yi-Yong Wu(吴宜勇), and Wei-Dong Fei(费维栋). Chin. Phys. B, 2021, 30(10): 107702.
[9] Effects of Ni substitution on multiferroic properties in Bi5FeTi3O15 ceramics
Hui Sun(孙慧), Jiaying Niu(钮佳颖), Haiying Cheng(成海英), Yuxi Lu(卢玉溪), Zirou Xu(徐紫柔), Lei Zhang(张磊), and Xiaobing Chen(陈小兵). Chin. Phys. B, 2021, 30(10): 107701.
[10] Point-contact spectroscopy on antiferromagnetic Kondo semiconductors CeT2Al10 (T=Ru and Os)
Jie Li(李洁), Li-Qiang Che(车利强), Tian Le(乐天), Jia-Hao Zhang(张佳浩), Pei-Jie Sun(孙培杰), Toshiro Takabatake, Xin Lu(路欣). Chin. Phys. B, 2020, 29(7): 077103.
[11] Topology and ferroelectricity in group-V monolayers
Mutee Ur Rehman, Chenqiang Hua(华陈强), Yunhao Lu(陆赟豪). Chin. Phys. B, 2020, 29(5): 057304.
[12] Seeing Dirac electrons and heavy fermions in new boron nitride monolayers
Yu-Jiao Kang(康玉娇), Yuan-Ping Chen(陈元平), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Yue-E Xie(谢月娥). Chin. Phys. B, 2020, 29(5): 057303.
[13] Microstructure and ferromagnetism of heavily Mn doped SiGe thin flims
Huanming Wang(王焕明), Sen Sun(孙森), Jiayin Xu(徐家胤), Xiaowei Lv(吕晓伟), Yuan Wang(汪渊), Yong Peng(彭勇), Xi Zhang(张析), Gang Xiang(向钢). Chin. Phys. B, 2020, 29(5): 057504.
[14] Defect induced room-temperature ferromagnetism and enhanced photocatalytic activity in Ni-doped ZnO synthesized by electrodeposition
Deepika, Raju Kumar, Ritesh Kumar, Kamdeo Prasad Yadav, Pratyush Vaibhav, Seema Sharma, Rakesh Kumar Singh, and Santosh Kumar†. Chin. Phys. B, 2020, 29(10): 108503.
[15] Homogeneous and inhomogeneous magnetic oxide semiconductors
Xiao-Li Li(李小丽), Xiao-Hong Xu(许小红). Chin. Phys. B, 2019, 28(9): 098506.
No Suggested Reading articles found!