Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 127101    DOI: 10.1088/1674-1056/20/12/127101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Valence band structure and density of states effective mass model of biaxial tensile strained silicon based on k·p theory

Kuang Qian-Wei(匡潜玮), Liu Hong-Xia(刘红侠), Wang Shu-Long(王树龙), Qin Shan-Shan(秦珊珊), and Wang Zhi-Lin(王志林)
School of Microelectronics, Key Laboratory of Ministry of Education of Wide Band-Gap Semiconductor Technology, Xidian University, Xi'an 710071, China
Abstract  After constructing a stress and strain model, the valence bands of in-plane biaxial tensile strained Si is calculated by k·p method. In the paper we calculate the accurate anisotropy valance bands and the splitting energy between light and heavy hole bands. The results show that the valance bands are highly distorted, and the anisotropy is more obvious. To obtain the density of states (DOS) effective mass, which is a very important parameter for device modeling, a DOS effective mass model of biaxial tensile strained Si is constructed based on the valance band calculation. This model can be directly used in the device model of metal-oxide semiconductor field effect transistor (MOSFET). It also a provides valuable reference for biaxial tensile strained silicon MOSFET design.
Keywords:  biaxial tensile strained Si      k·p theory      valance band      density of state effective mass  
Received:  31 May 2011      Revised:  19 September 2011      Accepted manuscript online: 
PACS:  71.20.Eh (Rare earth metals and alloys)  
  71.20.Nr (Semiconductor compounds)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60976068 and 60936005) and the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (Grant No. 78083).

Cite this article: 

Kuang Qian-Wei(匡潜玮), Liu Hong-Xia(刘红侠), Wang Shu-Long(王树龙), Qin Shan-Shan(秦珊珊), and Wang Zhi-Lin(王志林) Valence band structure and density of states effective mass model of biaxial tensile strained silicon based on k·p theory 2011 Chin. Phys. B 20 127101

[1] Hu H Y, Zhang H M, Dai X Y and Lü Y 2004 Chin. Phys. 12 295
[2] Qin S S, Zhang H M, Hu H Y, Dai X Y, Xuan R X and Shu B 2010 Chin. Phys B 19 117309
[3] Jiang T, Zhang H M, Wang W, Hu H Y and Dai X Y 2006 Chin. Phys. 15 1339
[4] Zhang Z F, Zhang H M, Hu H Y, Xuan R X and Song J J 2009 Acta Phys. Sin. 57 4667 (in Chinese)
[5] Schäffler F 1997 Semicond. Sci. Technol. 12 1515
[6] Maiti C, Bera L and Chattopadhyay S 1996 Semicond. Sci. Technol. 13 1225
[7] Hoyt J, Nayfeh H, Eguchi S, Aberg I, Xia G, Drak T, Fitzgerald E and Antoniadis D 2002 IEDM 23 26
[8] Lee M, Fitzgerald E, Bulsara M, Currie M and Lochtefeld A 2005 J. Appl. Phys. 97 011101
[9] Sun Y, Thompson S E and Nishida T 2007 J. Appl. Phys. 101 104503
[10] Thompson S E, Sun G, Wu K, Lim J and Nishida T 2004 IEDM Tech. Dig. p. 221
[11] Thompson S E, Sun G, Choi Y S and Nishida T 2006 IEEE Trans. Electron Dev. 53 1010
[12] Fischetti M V and Laux S E 1996 J. Appl. Phys. 80 2234
[13] Sechler E E 1952 Elasticity in Engineering (New York: John Wiley & Sons) p. 362
[14] Herbert R and Pawlik P S 1980 Elasticity: Theory and Application (New York: John Wiley & Sons) p. 213
[15] Shockley W and Bardeen J 1950 Phys. Rev. 78 173
[16] Dresselhaus G, Kip A F and Kittel C 1955 Phys. Rev. 98 368
[17] Luttinger J M and Kohn W 1955 Phys. Rev. 97 869
[1] Switching plasticity in compensated ferrimagnetic multilayers for neuromorphic computing
Weihao Li(李伟浩), Xiukai Lan(兰修凯), Xionghua Liu(刘雄华), Enze Zhang(张恩泽), Yongcheng Deng(邓永城), and Kaiyou Wang(王开友). Chin. Phys. B, 2022, 31(11): 117106.
[2] Origin of the low formation energy of oxygen vacancies in CeO2
Han Xu(许涵), Tongtong Shang(尚彤彤), Xuefeng Wang(王雪锋), Ang Gao(高昂), and Lin Gu(谷林). Chin. Phys. B, 2022, 31(10): 107102.
[3] Uniaxial stress effect on quasi-one-dimensional Kondo lattice CeCo2Ga8
Kangqiao Cheng(程康桥), Binjie Zhou(周斌杰), Cuixiang Wang(王翠香), Shuo Zou(邹烁), Yupeng Pan(潘宇鹏), Xiaobo He(何晓波), Jian Zhang(张健), Fangjun Lu(卢方君), Le Wang(王乐), Youguo Shi(石友国), and Yongkang Luo(罗永康). Chin. Phys. B, 2022, 31(6): 067104.
[4] Applications and functions of rare-earth ions in perovskite solar cells
Limin Cang(苍利民), Zongyao Qian(钱宗耀), Jinpei Wang(王金培), Libao Chen(陈利豹), Zhigang Wan(万志刚), Ke Yang(杨柯), Hui Zhang(张辉), and Yonghua Chen(陈永华). Chin. Phys. B, 2022, 31(3): 038402.
[5] Spin current transmission in Co1-xTbx films
Li Wang(王力), Yangtao Su(苏仰涛), Yang Meng(孟洋), Haibin Shi(石海滨), Xinyu Cao(曹昕宇), and Hongwu Zhao(赵宏武). Chin. Phys. B, 2022, 31(2): 027504.
[6] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[7] CeAu2In4: A candidate of quasi-one-dimensional antiferromagnetic Kondo lattice
Meng Lyu(吕孟), Hengcan Zhao(赵恒灿), Jiahao Zhang(张佳浩), Zhen Wang(王振), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2021, 30(8): 087101.
[8] Crystal structure and electromagnetic responses of tetragonal GdAlGe
Cong Wang(王聪), Yong-Quan Guo(郭永权), Tai Wang(王泰), and Shuo-Wang Yang(杨硕望). Chin. Phys. B, 2020, 29(12): 127502.
[9] Table-like shape magnetocaloric effect and large refrigerant capacity in dual-phase HoNi/HoNi2 composite
Dan Guo(郭丹), Yikun Zhang(张义坤)†, Yaming Wang(王雅鸣), Jiang Wang(王江), and Zhongming Ren(任忠鸣)‡. Chin. Phys. B, 2020, 29(10): 107502.
[10] Magnetic properties and magnetocaloric effects in (Ho1-xYx)5Pd2 compounds
X F Wu(武小飞), C P Guo(郭翠萍), G Cheng(成钢), C R Li(李长荣), J Wang(王江), Y S Du(杜玉松), G H Rao(饶光辉), Z M Du(杜振民). Chin. Phys. B, 2019, 28(5): 057502.
[11] Large reversible magnetocaloric effect induced by metamagnetic transition in antiferromagnetic HoNiGa compound
Yi-Xu Wang(王一旭), Hu Zhang(张虎), Mei-Ling Wu(吴美玲), Kun Tao(陶坤), Ya-Wei Li(李亚伟), Tim Yan(颜天宝), Ke-Wen Long(龙克文), Teng Long(龙腾), Zheng Pang(庞铮), Yi Long(龙毅). Chin. Phys. B, 2016, 25(12): 127104.
[12] Effects of terbium sulfide addition on magnetic properties, microstructure and thermal stability of sintered Nd—Fe—B magnets
Xiang-Bin Li(李向斌), Shuo Liu(刘硕), Xue-Jing Cao(曹学静), Bei-Bei Zhou(周贝贝), Ling Chen(陈岭), A-Ru Yan(闫阿儒), Gao-Lin Yan(严高林). Chin. Phys. B, 2016, 25(7): 077502.
[13] Band-gap engineering of La1-xNdxAlO3 (x = 0, 0.25, 0.50, 0.75, 1) perovskite using density functional theory: A modified Becke Johnson potential study
Sandeep, D P Rai, A Shankar, M P Ghimire, Anup Pradhan Sakhya, T P Sinha, R Khenata, S Bin Omran, R K Thapa. Chin. Phys. B, 2016, 25(6): 067101.
[14] Review of magnetic properties and magnetocaloric effect in the intermetallic compounds of rare earth with low boiling point metals
Ling-Wei Li(李领伟). Chin. Phys. B, 2016, 25(3): 037502.
[15] Effects of oxidation of DyH3 in Nd-Fe-B sintered magnets
Yan Gao-Lin (严高林), Fang Zhi-Hao (方之颢). Chin. Phys. B, 2015, 24(10): 107503.
No Suggested Reading articles found!