Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 126801    DOI: 10.1088/1674-1056/20/12/126801
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Formation of rippled surface morphology during Si/Si (100) epitaxy by ultrahigh vacuum chemical vapour deposition

Hu Wei-Xuan(胡炜玄), Cheng Bu-Wen(成步文), Xue Chun-Lai(薛春来), Su Shao-Jian(苏少坚), and Wang Qi-Ming(王启明)
State Key Laboratory on Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  The Si epitaxial films are grown on Si (100) substrates using pure Si2H6 as a gas source using ultrahigh vacuum chemical vapour deposition technology. The values of growth temperature Tg are 650 ℃, 700 ℃, 730 ℃, 750 ℃, and 800 ℃. Growth mode changes from island mode to step-flow mode with Tg increasing from 650 ℃ to 700 ℃. Rippled surface morphologies are observed at Tg = 700 ℃, 730 ℃, and 800 ℃, but disappear when Tg = 750 ℃. A model is presented to explain the formation and the disappearance of the ripples by considering the stability of the step-flow growth.
Keywords:  step-bunching      Ehrlich-Chwoebel barrier      elastic repulsion      fluctuation  
Received:  17 February 2011      Revised:  20 June 2011      Accepted manuscript online: 
PACS:  68.55.-a (Thin film structure and morphology)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  81.15.-z (Methods of deposition of films and coatings; film growth and epitaxy)  
Fund: Project supported by the Major State Basic Research Program of China (Grant No. 2007CB613404), the National High Technology Research and Development Program of China (Grant No. 2006AA03Z415), the National Natural Science Foundation of China (Grant Nos. 60676005, 61036003, and 60906035), and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. ISCAS2009T01).

Cite this article: 

Hu Wei-Xuan(胡炜玄), Cheng Bu-Wen(成步文), Xue Chun-Lai(薛春来), Su Shao-Jian(苏少坚), and Wang Qi-Ming(王启明) Formation of rippled surface morphology during Si/Si (100) epitaxy by ultrahigh vacuum chemical vapour deposition 2011 Chin. Phys. B 20 126801

[1] Kang Y M, Liu H D, Morse M, Paniccia M J, Zadka M, Litski S, Sarid G, Pauchard A, Kuo Y H, Chen H W, Zaoui W S, Bowers J E, Beling A, McIntosh D C, Zheng X G and Campbell J C 2009 Nature Photonics 3 59
[2] He Y, Sun C Z, Xu J M, Wu Q, Xiong B and Luo Y 2010 Acta Phys. Sin. 59 7239 (in Chinese)
[3] Cheng B W, Xue H Y, Hu D, Han G Q, Zeng Y G, Bai A Q, Xue C L, Luo L P, Zuo Y H and Wang Q M 2008 Proceedings of the Fifth IEEE International Conference on Group IV Photonics September, Sorrento, Italy p. 140
[4] Xue H Y, Xue C L, Cheng B W, Yu Y D and Wang Q M 2009 Chin. Phys. B 18 2542
[5] Pidduck A J, Robbins D J, Young I M and Patel G 1989 Thin Solid Films 183 255
[6] Myslivecek J, Schelling C, Schelling F, Springholz G, Smilauer P, Krug J and Voigtlander B 2002 Surf. Sci. 520 193
[7] van Wingerden J, van Halen E C, Werner K, Scholte P M L O and Tuinstra F 1996 Surf. Sci. 352 641
[8] Hu W X, Cheng B W, Xue C L, Xue H Y, Su S J, Bai A Q, Luo L P, Yu Y D and Wang Q M 2009 Appl. Phys. Lett. 95 092102
[9] de Miguel J J, Aumann C E, Kariotis R and Lagally M G 1991 Phys. Rev. Lett. 67 2830
[10] Chadi D J 1987 Phys. Rev. Lett. 59 1691
[11] Men F K, Packard W P and Webb M B 1988 Phys. Rev. Lett. 61 2469
[12] Alerhand O L, Vanderbilt D, Meade R D and Joannopoulos J D 1988 Phys. Rev. Lett. 61 1973
[13] Voigtlander B, Weber T, Pavel S and Dietrich E W 1997 Phys. Rev. Lett. 78 2164
[14] Mo Y W and Lagally M G 1991 Surf. Sci. 248 313
[15] Mo Y W, Kleiner J, Webb M B and Lagally M G 1992 Surf. Sci. 268 275
[16] Kandel D and Weeks J D 1995 Phys. Rev. Lett. 74 3632
[17] Poon T W, Yip S, Ho P S and Abraham F F 1990 Phys. Rev. Lett. 65 2161
[18] Schwoebel R L and Shipsey E J 1966 J. Appl. Phys. 37 3682
[19] Hong W, Zhang Z Y and Suo Z G 2006 Phys. Rev. B 74 235318
[20] Swartzentruber B S 1997 Surf. Sci. 374 277
[21] Tanaka S, Bartelt N C, Umbach C C, Tromp R M and Blakely J M 1997 Phys. Rev. Lett. 78 3342
[22] Eerden J P V D, Muller H and Krumbhaar 1986 Phys. Rev. Lett. 57 2431
[23] Alerhand O L, Nihat B A, Joannopoulos J D, Vanderbilt D, Hamers R J and Demuth J E 1990 Phys. Rev. Lett. 64 2406.
[24] Shigekawa H, Hata K, Miyake K, Ishida M and Ozawa S 1997 Phys. Rev. B 55 15448
[25] Dabrowski J, Pehlke E and Scheffler M 1994 J. Vac. Sci. Technol. B 12 2675
[1] Investigations of moiré artifacts induced by flux fluctuations in x-ray dark-field imaging
Zhi-Li Wang(王志立), Zi-Han Chen(陈子涵), Yao Gu(顾瑶), Heng Chen(陈恒), and Xin Ge(葛昕). Chin. Phys. B, 2023, 32(3): 038704.
[2] Finite-key analysis of practical time-bin high-dimensional quantum key distribution with afterpulse effect
Yu Zhou(周雨), Chun Zhou(周淳), Yang Wang(汪洋), Yi-Fei Lu(陆宜飞), Mu-Sheng Jiang(江木生), Xiao-Xu Zhang(张晓旭), and Wan-Su Bao(鲍皖苏). Chin. Phys. B, 2022, 31(8): 080303.
[3] Phase-matching quantum key distribution with light source monitoring
Wen-Ting Li(李文婷), Le Wang(王乐), Wei Li(李威), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2022, 31(5): 050310.
[4] Beating standard quantum limit via two-axis magnetic susceptibility measurement
Zheng-An Wang(王正安), Yi Peng(彭益), Dapeng Yu(俞大鹏), and Heng Fan(范桁). Chin. Phys. B, 2022, 31(4): 040309.
[5] Coherent interaction and action-counteraction theory in small polaron systems, and ground state properties
Zhi-Hua Luo(罗质华) and Chao-Fan Yu(余超凡). Chin. Phys. B, 2022, 31(11): 117104.
[6] Characteristics of temperature fluctuation in two-dimensional turbulent Rayleigh-Bénard convection
Ming-Wei Fang(方明卫), Jian-Chao He(何建超), Zhan-Chao Hu(胡战超), and Yun Bao(包芸). Chin. Phys. B, 2022, 31(1): 014701.
[7] Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs
A F Fang(房爱芳), R Zhou(周睿), H Tukada, J Yang(杨杰), Z Deng(邓正), X C Wang(望贤成) , C Q Jin(靳常青), and Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2021, 30(4): 047403.
[8] Electrical and thermoelectric study of two-dimensional crystal of NbSe2
Xin-Qi Li(李新祺), Zhi-Lin Li(李治林), Jia-Ji Zhao(赵嘉佶), Xiao-Song Wu(吴孝松). Chin. Phys. B, 2020, 29(8): 087402.
[9] Symmetry properties of fluctuations in an actively driven rotor
He Li(李赫), Xiang Yang(杨翔), Hepeng Zhang(张何朋). Chin. Phys. B, 2020, 29(6): 060502.
[10] M2-factor of high-power laser beams through a multi-apertured ABCD optical system
Xiangmei Zeng(曾祥梅), Meizhi Zhang(张美志), Dongmei Cao(曹冬梅), Dingyu Sun(孙鼎宇), Hua Zhou(周花). Chin. Phys. B, 2020, 29(6): 064206.
[11] Quantum fluctuation of entanglement for accelerated two-level detectors
Si-Xuan Zhang(张思轩), Tong-Hua Liu(刘统华), Shuo Cao(曹硕), Yu-Ting Liu(刘宇婷), Shuai-Bo Geng(耿率博), Yu-Jie Lian(连禹杰). Chin. Phys. B, 2020, 29(5): 050402.
[12] Effect of grain boundary energy anisotropy on grain growth in ZK60 alloy using a 3D phase-field modeling
Yu-Hao Song(宋宇豪), Ming-Tao Wang(王明涛), Jia Ni(倪佳), Jian-Feng Jin(金剑锋), and Ya-Ping Zong(宗亚平). Chin. Phys. B, 2020, 29(12): 128201.
[13] PBTI stress-induced 1/ f noise in n-channel FinFET
Dan-Yang Chen(陈丹旸), Jin-Shun Bi(毕津顺), Kai Xi(习凯), and Gang Wang(王刚). Chin. Phys. B, 2020, 29(12): 128501.
[14] Fluctuation theorem for entropy production at strong coupling
Y Y Xu(徐酉阳), J Liu(刘娟), M Feng(冯芒). Chin. Phys. B, 2020, 29(1): 010501.
[15] Fluctuation of arc plasma in arc plasma torch with multiple cathodes
Zelong Zhang(张泽龙), Cheng Wang(王城), Qiang Sun(孙强), Weidong Xia(夏维东). Chin. Phys. B, 2019, 28(9): 095201.
No Suggested Reading articles found!