Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 126101    DOI: 10.1088/1674-1056/20/12/126101
RAPID COMMUNICATION Prev   Next  

Cation mixing (Li0.5Fe0.5)2SO4F cathode material for lithium-ion batteries

Sun Yang(孙洋), Liu Lei(刘磊), Dong Jin-Ping(董金平), Zhang Bin(张斌), and Huang Xue-Jie(黄学杰)† 
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  We study the crystal structure of a triplite-structured (Li0.5Fe0.5)SO4F with full Li+/Fe2+ mixing. This promising polyanion cathode material for lithium-ion batteries operates at 3.9 V versus Li+/Li with a theoretical capacity of 151 mAh/g. Its unique cation mixing structure does not block the Li+ diffusion and results in a small lattice volume change during the charge/discharge process. The calculations show that it has a three-dimensional network for Li-ion migration with an activation energy ranging from 0.53 eV to 0.68 eV, which is comparable with that in LiFePO4 with only one-dimensional channels. This work suggests that further exploring cathode materials with full cation mixing for Li-ion batteries will be valuable.
Keywords:  lithium-ion battery      cathode material      triplite      cation mixing  
Received:  12 October 2011      Revised:  21 October 2011      Accepted manuscript online: 
PACS:  61.66.-f (Structure of specific crystalline solids)  
  66.10.Ed (Ionic conduction)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  82.47.Aa (Lithium-ion batteries)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA033101).

Cite this article: 

Sun Yang(孙洋), Liu Lei(刘磊), Dong Jin-Ping(董金平), Zhang Bin(张斌), and Huang Xue-Jie(黄学杰) Cation mixing (Li0.5Fe0.5)2SO4F cathode material for lithium-ion batteries 2011 Chin. Phys. B 20 126101

[1] Tarascon J M and Armand M 2001 Nature 414 359
[2] Kang K, Meng Y S, Bréger J, Grey C P and Ceder G 2006 Science 311 977
[3] Malik R, Burch D, Bazant M and Ceder G 2010 Nano Lett. 10 4123
[4] Li H, Wang Z X, Chen L Q and Huang X J 2009 Adv. Mater. 21 4593
[5] Liu L, Zhang B, Li H and Huang X J 2011 Prog. Nat. Sci. 21 211
[6] Liu L, Zhang B, Li H and Huang X J 2011 18th International Conference on Solid State Ionics, Warsaw, Poland, July 3-8, 2011 p. 375
[7] Recham N, Chotard J N, Dupont L, Delacourt C, Walker W, Armand M and Tarascon J M 2010 Nat. Mater. 9 68
[8] Zhou F, Cococcioni M, Marianetti C A, Morgan D and Ceder G 2004 Phys. Rev. B 70 235121
[9] Zhou F, Kang K, Maxisch T, Ceder G and Morgan D 2004 Solid State Commun. 132 181
[10] Zhou F, Cococcioni M, Kang K and Ceder G 2004 Electrochem. Commun. 6 1144
[11] Zhou F, Maxisch T and Ceder G 2006 Phys. Rev. Lett. 97 155704
[12] Rodr'higuez-Carvajal J 1993 Physica B 192 55
[13] Rea J R and Kostiner E 1972 Acta Cryst. B 28 2525
[14] Yang S, Song Y, Ngala K, Zavalij P Y and Whittingham M S 2003 J. Power Sources 119 239
[15] Rougier A, Gravereau P and Delmas C 1996 J. Electrochem. Soc. 143 1168
[16] Rossen E, Jones C and Dahn J 1992 Solid State Ionics 181 1209
[17] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[18] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[19] Blöchl P E 1994 Phys. Rev. B 50 17953
[20] Bengone O, Alouani M, Blöchl P and Hugel J 2000 Phys. Rev. B 62 16392
[21] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[22] Liechtenstein A I, Anisimov V I and Zaanen J 1995 Phys. Rev. B 52 R5467
[23] Mills G, Jonsson H and Schenter G K 1995 Surf. Sci. 324 305
[24] Ceder G, Adynolv M K and Kohn A F 1997 Comput. Mater. Sci. 8 161
[25] Frayret C, Villesuzanne A, Spaldin N, Bousquet E, Chotard J N, Recham N and Tarascon J M 2010 Phys. Chem. Chem. Phys. 12 15512
[26] Padhi A K, Nanjundaswamy K S and Goodenough J B 1997 J. Electrochem. Soc. 144 1188
[27] Islam M S, Driscoll D J, Fisher C A J and Slater P R 2005 Chem. Mater. 17 5085
[28] Hoang K and Johannes M 2011 Chem. Mater. 23 3003
[29] Tripathi R, Gardiner G R, Islam M S and Nazar L F 2011 Chem. Mater. 23 2278
[30] Bader R F W 1991 Chem. Rev. 91 893
[31] Henkelman G, Arnaldsson A and J'onsson H 2006 Comput. Mater. Sci. 36 254
[32] Sanville E, Kenny S D, Smith R and Henkelman G 2007 J. Comp. Chem. 28 899
[33] Zaghib Z, Mauger A, Goodenough J B, Gendron F and Julien C M 2007 Chem. Mater. 19 3740
[34] Liu Z J and Huang X J 2010 Solid State Ionics 57 311
[35] Mueller T, Hautier G, Jain A and Ceder G 2011 Chem. Mater. 23 3854
[36] Barpanda P, Recham N, Chotard J N, Djellab K, Walker W, Armand M and Tarascon J M 2010 J. Mater. Chem. 20 1659
[37] Yamada A, Takei Y, Koizumi H, Sonoyama N and Kanno R 2006 Chem. Mater. 18 804
[38] Delacourt C, Laffont L, Bouchet R, Wurm C, Leriche J, Morcrette J T M and Masquelier C 2005 J. Electrochem. Soc. 152 A913
[1] Probing the improved stability for high nickel cathode via dual-element modification in lithium-ion
Fengling Chen(陈峰岭), Chaozhi Zeng(曾朝智), Chun Huang(黄淳), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(7): 078101.
[2] Enhancement of electrochemical performance in lithium-ion battery via tantalum oxide coated nickel-rich cathode materials
Fengling Chen(陈峰岭), Jiannan Lin(林建楠), Yifan Chen(陈一帆), Binbin Dong(董彬彬), Chujun Yin(尹楚君), Siying Tian(田飔莹), Dapeng Sun(孙大鹏), Jing Xie (解婧),Zhenyu Zhang(张振宇), Hong Li(李泓), and Chaobo Li(李超波). Chin. Phys. B, 2022, 31(5): 058101.
[3] Review on electrode-level fracture in lithium-ion batteries
Bo Lu(吕浡), Chengqiang Ning(宁成强), Dingxin Shi(史定鑫), Yanfei Zhao(赵炎翡), Junqian Zhang(张俊乾). Chin. Phys. B, 2020, 29(2): 026201.
[4] Influence of carbon coating on the electrochemical performance of SiO@C/graphite composite anode materials
Hao Lu(陆浩), Junyang Wang(汪君洋), Bonan Liu(刘柏男), Geng Chu(褚赓), Ge Zhou(周格), Fei Luo(罗飞), Jieyun Zheng(郑杰允), Xiqian Yu(禹习谦), Hong Li(李泓). Chin. Phys. B, 2019, 28(6): 068201.
[5] Parameter identification and state-of-charge estimation approach for enhanced lithium-ion battery equivalent circuit model considering influence of ambient temperatures
Hui Pang(庞辉), Lian-Jing Mou(牟联晶), Long Guo(郭龙). Chin. Phys. B, 2019, 28(10): 108201.
[6] First principle study of LiXS2 (X = Ga, In) as cathode materials for Li ion batteries
Feng-Ya Rao(饶凤雅), Fang-Hua Ning(宁芳华), Li-Wei Jiang(蒋礼威), Xiang-Ming Zeng(曾祥明), Mu-Sheng Wu(吴木生), Bo Xu(徐波), Chu-Ying Ouyang(欧阳楚英). Chin. Phys. B, 2016, 25(2): 028202.
[7] Multi-scale computation methods: Their applications in lithium-ion battery research and development
Siqi Shi(施思齐), Jian Gao(高健), Yue Liu(刘悦), Yan Zhao(赵彦), Qu Wu(武曲), Wangwei Ju(琚王伟), Chuying Ouyang(欧阳楚英), Ruijuan Xiao(肖睿娟). Chin. Phys. B, 2016, 25(1): 018212.
[8] Redox-assisted Li+-storage in lithium-ion batteries
Qizhao Huang(黄启昭) and Qing Wang(王庆). Chin. Phys. B, 2016, 25(1): 018213.
[9] Analysis on the capacity degradation mechanism of a series lithium-ion power battery pack based on inconsistency of capacity
Wang Zhen-Po (王震坡), Liu Peng (刘鹏), Wang Li-Fang (王丽芳). Chin. Phys. B, 2013, 22(8): 088801.
[10] Electrochemical properties of SnO2 nanorods as anode materials in lithium-ion battery
Shi Song-Lin(施松林), Liu Yong-Gang(刘永刚), Zhang Jing-Yuan(张敬源), and Wang Tai-Hong(王太宏). Chin. Phys. B, 2009, 18(10): 4564-4570.
No Suggested Reading articles found!