Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 120701    DOI: 10.1088/1674-1056/20/12/120701
GENERAL Prev   Next  

Novel delay-dependent stability criteria for neural networks with interval time-varying delay

Wang Jian-An(王健安)
School of Electronics Information Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
Abstract  The problem of delay-dependent asymptotic stability for neural networks with interval time-varying delay is investigated. Based on the idea of delay decomposition method, a new type of Lyapunov-Krasovskii functional is constructed. Several novel delay-dependent stability criteria are presented in terms of linear matrix inequality by using the Jensen integral inequality and a new convex combination technique. Numerical examples are given to demonstrate that the proposed method is effective and less conservative.
Keywords:  neural networks      interval time-varying delay      delay-dependent stability      convex combination      linear matrix inequality  
Received:  20 March 2011      Revised:  10 July 2011      Accepted manuscript online: 
PACS:  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  02.10.Yn (Matrix theory)  
  02.30.Yy (Control theory)  
Fund: Project supported by the Doctoral Startup Foundation of Taiyuan University of Science and Technology, China (Grant No. 20112010).

Cite this article: 

Wang Jian-An(王健安) Novel delay-dependent stability criteria for neural networks with interval time-varying delay 2011 Chin. Phys. B 20 120701

[1] van Putten M and Stam C J 2001 Phys. Lett. A 281 131
[2] Arik S 2004 Neural Netw. 17 1027
[3] Chen T and Rong L 2003 Phys. Lett. A 317 436
[4] Cao J D and Wang L 2002 IEEE Trans. Neural Netw. 13 457
[5] Singh V 2004 IEEE Trans. Neural Netw. 15 223
[6] Cui B T, Chen J and Lou X Y 2008 Chin. Phys. B 17 1670
[7] Chen Y G and Wu Y Y 2009 Neurocomputing 72 1065
[8] Chen D L and Zhang W D 2008 Chin. Phys. B 17 1506
[9] Lee S M, Kwon O M and Park J H 2010 Chin. Phys. B 19 050507
[10] Sun J, Liu G P, Chen J and Rees D 2009 Phys. Lett. A 373 342
[11] Hua C C, Long C N and Guan X P 2006 Phys. Lett. A 352 335
[12] Xu S Y, Lam J and Ho D W C 2008 Int. J. Bifur. Chaos 18 245
[13] He Y, Wu M and She J H 2006 IEEE Trans. Circuits Syst. II 53 553
[14] He Y, Liu G P and Rees D 2007 IEEE Trans. Neural Netw. 18 310
[15] Shao H Y 2010 Circuits, Systems, and Signal Processing 29 637
[16] Li T, Guo L, Sun C Y and Lin C 2008 IEEE Trans. Neural Netw. 19 726
[17] Li T and Ye X L 2010 Neurocomputing 73 1038
[18] Zheng C D, Zhang H G and Wang Z S 2009 IEEE Trans. Circuits Syst. II 56 605
[19] Zheng C D, Zhang H G and Wang Z S 2010 IEEE Trans. Circuits Syst. II 57 41
[20] Mou S S, Gao H J, Lam J and Qiang W Y 2008 IEEE Trans. Neural. Netw. 19 532
[21] Xiao S P and Zhang X M 2009 IEEE Trans. Circuits Syst. II 56 659
[22] Zhang X M and Han Q L 2009 IEEE Trans. Neural Netw. 20 533
[23] Qiu F, Cui B T and Ji Y 2009 Chin. Phys. B 18 5203
[24] Tian J K and Xie X J 2010 Phys. Lett. A 374 938
[25] He Y, Liu G P, Rees D and Wu M 2007 IEEE Trans. Neural Netw. 18 1850
[26] Tian J K and Zhou X B 2010 Expert System with Applications 37 7521
[27] Chen J, Sun J, Liu G P and Rees D 2010 Phys. Lett. A 374 4397
[28] Zuo Z Q, Yang C L and Wang Y J 2010 IEEE Trans. Neural Netw. 21 339
[29] Gu K Q 2000 Proc. 39/th IEEE Conf. Decision and Control p. 2805
[30] Zhu X L, Wang Y and Yang G H 2010 IET Control Theory Appl. 4 1101
[1] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[2] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[3] Parameter estimation of continuous variable quantum key distribution system via artificial neural networks
Hao Luo(罗浩), Yi-Jun Wang(王一军), Wei Ye(叶炜), Hai Zhong(钟海), Yi-Yu Mao(毛宜钰), and Ying Guo(郭迎). Chin. Phys. B, 2022, 31(2): 020306.
[4] Learnable three-dimensional Gabor convolutional network with global affinity attention for hyperspectral image classification
Hai-Zhu Pan(潘海珠), Mo-Qi Liu(刘沫岐), Hai-Miao Ge(葛海淼), and Qi Yuan(袁琪). Chin. Phys. B, 2022, 31(12): 120701.
[5] Finite-time Mittag—Leffler synchronization of fractional-order complex-valued memristive neural networks with time delay
Guan Wang(王冠), Zhixia Ding(丁芝侠), Sai Li(李赛), Le Yang(杨乐), and Rui Jiao(焦睿). Chin. Phys. B, 2022, 31(10): 100201.
[6] $\mathcal{H}_{\infty }$ state estimation for Markov jump neural networks with transition probabilities subject to the persistent dwell-time switching rule
Hao Shen(沈浩), Jia-Cheng Wu(吴佳成), Jian-Wei Xia(夏建伟), and Zhen Wang(王震). Chin. Phys. B, 2021, 30(6): 060203.
[7] Relationship between manifold smoothness and adversarial vulnerability in deep learning with local errors
Zijian Jiang(蒋子健), Jianwen Zhou(周健文), and Haiping Huang(黄海平). Chin. Phys. B, 2021, 30(4): 048702.
[8] Effective suppression of beta oscillation in Parkinsonian state via a noisy direct delayed feedback control scheme
Hai-Tao Yu(于海涛), Zi-Han Meng(孟紫寒), Chen Liu(刘晨), Jiang Wang(王江), and Jing Liu(刘静). Chin. Phys. B, 2021, 30(3): 038703.
[9] Discontinuous event-trigger scheme for global stabilization of state-dependent switching neural networks with communication delay
Yingjie Fan(樊英杰), Zhen Wang(王震), Jianwei Xia(夏建伟), and Hao Shen(沈浩). Chin. Phys. B, 2021, 30(3): 030202.
[10] Constructing reduced model for complex physical systems via interpolation and neural networks
Xuefang Lai(赖学方), Xiaolong Wang(王晓龙, and Yufeng Nie(聂玉峰). Chin. Phys. B, 2021, 30(3): 030204.
[11] Adaptive synchronization of a class of fractional-order complex-valued chaotic neural network with time-delay
Mei Li(李梅), Ruo-Xun Zhang(张若洵), and Shi-Ping Yang(杨世平). Chin. Phys. B, 2021, 30(12): 120503.
[12] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
[13] Application of the edge of chaos in combinatorial optimization
Yanqing Tang(唐彦卿), Nayue Zhang(张娜月), Ping Zhu(朱萍), Minghu Fang(方明虎), and Guoguang He(何国光). Chin. Phys. B, 2021, 30(10): 100505.
[14] Finite-time Mittag-Leffler synchronization of fractional-order delayed memristive neural networks with parameters uncertainty and discontinuous activation functions
Chong Chen(陈冲), Zhixia Ding(丁芝侠), Sai Li(李赛), Liheng Wang(王利恒). Chin. Phys. B, 2020, 29(4): 040202.
[15] Multiple Lagrange stability and Lyapunov asymptotical stability of delayed fractional-order Cohen-Grossberg neural networks
Yu-Jiao Huang(黄玉娇), Xiao-Yan Yuan(袁孝焰), Xu-Hua Yang(杨旭华), Hai-Xia Long(龙海霞), Jie Xiao(肖杰). Chin. Phys. B, 2020, 29(2): 020703.
No Suggested Reading articles found!