Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 120302    DOI: 10.1088/1674-1056/20/12/120302
GENERAL Prev   Next  

Evolution of a two-mode squeezed vacuum in the amplitude dissipative channel

Jiang Nian-Quan(姜年权)a)†, Fan Hong-Yi(范洪义) b), Xi Liu-Sheng(席留生)c), Tang Long-Ying(唐龙英)a), and Yuan Xian-Zhang(袁先漳)a)
a College of Physics and Electric Information, Wenzhou University, Wenzhou 325035, China; b Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, China; c College of Foreign Languages, Wenzhou University, Wenzhou 325035, China
Abstract  For the first time we derive the dissipating result of an initial two-mode squeezed pure vacuum state passing through a two-mode amplitude dissipative channel described by the direct product of two independent single-mode master equations. Although these two master equations do not mix the two modes (there is no coupling between them), since the two-mode squeezed state is simultaneously an entangled state, the final state which emerges from passing this channel is a two-mode mixed density operator. The compact expression of the outcoming state is obtained, which manifestly shows that as time evolves, the squeezing effect decreases.
Keywords:  squeezed vacuum state      dissipative channel      master equation  
Received:  04 May 2011      Revised:  13 June 2011      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  42.50.-p (Quantum optics)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10947017/A05, 10874174, and A040408) and the Natural Science Foundation of Zhejiang Province of China (Grant No. Y6090529).

Cite this article: 

Jiang Nian-Quan(姜年权), Fan Hong-Yi(范洪义), Xi Liu-Sheng(席留生), Tang Long-Ying(唐龙英), and Yuan Xian-Zhang(袁先漳) Evolution of a two-mode squeezed vacuum in the amplitude dissipative channel 2011 Chin. Phys. B 20 120302

[1] Takahashi Y and Umezawa H 1975 Collecive Phenomena2 55
[2] Memorial Issue for Umezawa H 1996 Int. J. Mod. Phys.B 10 memorial issue and references therein
[3] Loudon R and Knight P L 1987 J. Mod. Opt. 34 709
[4] Gardiner CWand Zoller P 2000 Quantum Noise 2nd edn.(New Yok: Springer-Verlag)
[5] Orszag M 2000 Quantum Optics (Berlin: Springer)
[6] Fan H Y 2008 Ann. Phys. 323 500
[7] Jiang N Q and Zheng Y Z 2006 Phys. Rev. A 74 012306
[8] Jiang N Q, Jing B Q, Zhang Y and Cai G C 2008 Europhys.Lett. 84 14002
[9] Jiang N Q, Fan H Y and Hu L Y 2011 J. Phys. A: Math.Theor. 44 195302
[10] Fan H Y, Ren G, Hu L Y and Jiang N Q 2010 Chin. Phys.B 19 114206
[11] Fan H Y and Jiang N Q 2010 Chin. Phys. B 19 090301
[12] Fan H Y and Hu L Y 2008 Mod. Phys. Lett. B 22 2435
[13] Fan H Y and Klauder J R 1994 Phys. Rev. A 49 704
[14] Fan H Y and Ren G 2010 Chin. Phys. Lett. 27 050302
[15] Fan H Y 2010 Chin. Phys. B 19 050303
[1] Super-sensitivity measurement of tiny Doppler frequency shifts based on parametric amplification and squeezed vacuum state
Zhi-Yuan Wang(王志远), Zi-Jing Zhang(张子静), and Yuan Zhao(赵远). Chin. Phys. B, 2021, 30(7): 074202.
[2] Quantum exceptional points of non-Hermitian Hamiltonian and Liouvillian in dissipative quantum Rabi model
Xianfeng Ou(欧先锋), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(11): 110309.
[3] Dynamical evolution of photon-added thermal state in thermal reservoir
Xue-Xiang Xu(徐学翔), Hong-Chun Yuan(袁洪春). Chin. Phys. B, 2019, 28(11): 110301.
[4] Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states
Yan-Yan Feng(冯艳艳), Rong-Hua Shi(施荣华), Ying Guo(郭迎). Chin. Phys. B, 2018, 27(2): 020302.
[5] Super-resolution and super-sensitivity of entangled squeezed vacuum state using optimal detection strategy
Jiandong Zhang(张建东), Zijing Zhang(张子静), Longzhu Cen(岑龙柱), Shuo Li(李硕), Yuan Zhao(赵远), Feng Wang(王峰). Chin. Phys. B, 2017, 26(9): 094204.
[6] Generation of squeezed vacuum on cesium D2 line down to kilohertz range
Jian-Feng Tian(田剑锋), Guan-Hua Zuo(左冠华), Yu-Chi Zhang(张玉驰), Gang Li(李刚), Peng-Fei Zhang(张鹏飞), Tian-Cai Zhang(张天才). Chin. Phys. B, 2017, 26(12): 124206.
[7] Dynamics of spinor Bose-Einstein condensate subject to dissipation
Man-Man Pang(庞曼曼), Ya-Jiang Hao(郝亚江). Chin. Phys. B, 2016, 25(4): 040501.
[8] A new optical field generated as an output of the displaced Fock state in an amplitude dissipative channel
Xu Xue-Fen(许雪芬), Fan Hong-Yi(范洪义). Chin. Phys. B, 2015, 24(1): 010301.
[9] New approach to solving master equations of density operator for the Jaynes Cummings model with cavity damping
Seyed Mahmoud Ashrafi, Mohammad Reza Bazrafkan. Chin. Phys. B, 2014, 23(9): 090303.
[10] Organic magnetoresistance based on hopping theory
Yang Fu-Jiang (杨福江), Xie Shi-Jie (解士杰). Chin. Phys. B, 2014, 23(9): 097306.
[11] Scheme for generating a cluster-type entangled squeezed vacuum state via cavity QED
Wen Jing-Ji (文晶姬), Yeon Kyu-Hwang, Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2014, 23(4): 040301.
[12] Master equation describing the diffusion process for a coherent state
Liu Tang-Kun (刘堂昆), Shan Chuan-Jia (单传家), Liu Ji-Bing (刘继兵), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(3): 030303.
[13] Evolution law of a negative binomial state in an amplitude dissipative channel
Chen Feng (陈锋), Fan Hong-Yi (范洪义). Chin. Phys. B, 2014, 23(3): 030304.
[14] Drift coefficients of motor proteins moving along sidesteps
Li Jing-Hui (李静辉). Chin. Phys. B, 2014, 23(10): 100503.
[15] Asymptotic dynamics of the alternate degrees of freedom for atwo-mode system: An analytically solvable model
M. Arsenijević, J. Jeknić-Dugić, M. Dugić. Chin. Phys. B, 2013, 22(2): 020302.
No Suggested Reading articles found!