Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 120301    DOI: 10.1088/1674-1056/20/12/120301
GENERAL Prev   Next  

Dissipation of a two-mode squeezed vacuum state in the single-mode amplitude damping channel

Zhou Nan-Run(周南润)a)†, Hu Li-Yun(胡利云) b), and Fan Hong-Yi(范洪义)c)
a Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China; b Department of Physics, Shanghai Jiao Tong University, Shanghai 200030, China; c School of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, China
Abstract  We explore how a two-mode squeezed vacuum state sechθ ea+b+ tanh θ |00> evolves when it undergoes a singlemode amplitude dissipative channel with rate of decay κ. We find that in this process not only the squeezing parameter decreases, tanh θ → e-κt tanh θ, but also the second-mode vacuum state evolves into a chaotic state exp{b+bln[1 - e-2κt tanh2 θ]}. The outcome state is no more a pure state, but an entangled mixed state.
Keywords:  amplitude dissipative channel      two-mode squeezed vacuum state      two-mode entangled state      quantum communication  
Received:  05 April 2011      Revised:  17 June 2011      Accepted manuscript online: 
PACS:  03.65.-w (Quantum mechanics)  
  42.50.-p (Quantum optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11047133 and 10647133), the Natural Science Foundation of Jiangxi Province of China (Grant Nos. 2009GQS0080 and 2010GQW0027), and the Research Foundation of the Education Department of Jiangxi Province of China (Grant Nos. GJJ11339 and GJJ10097).

Cite this article: 

Zhou Nan-Run(周南润), Hu Li-Yun(胡利云), and Fan Hong-Yi(范洪义) Dissipation of a two-mode squeezed vacuum state in the single-mode amplitude damping channel 2011 Chin. Phys. B 20 120301

[1] Bouwmeester D, Ekert A and Zeilinger 2000 The Physicsof Quantum Information (Berlin: Springer)
[2] Gardiner CWand Zoller P 2000 Quantum Noise 2nd edn.(New York: Springer-Verlag)
[3] Fan H Y and Hu L Y 2009 Chin. Phys. B 18 1061
[4] Fan H Y and Hu L Y 2009 Commun. Theor. Phys. 51 729
[5] Fan H Y and Klauder J R 1994 Phys. Rev. A 49 704
[6] Fan H Y and Fan Y 1998 Phys. Lett. A 246 242
[7] Fan H Y and Hu L Y 2008 Mod. Phys. Lett. B 22 2435
[8] Takahashi Y and Umezawa H 1975 Collecive Phenomena2 55
[9] Loudon R and Knight P L 1987 J. Mod. Opt. 34 709
[10] Mandel L and Wolf E 1995 Optical Coherence and QuantumOptics (New York: Cambridge University Press)
[11] Hu L Y, Xu X X, Wang Z S and Xu X F 2010 Phys. Rev.A 82 043842
[12] Hu L Y, Xu X X, Guo Q and Fan H Y 2010 Opt. Commun.283 5074
[13] Hu L Y and Fan H Y 2009 Chin. Phys. B 18 4657
[1] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[2] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[3] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
[4] Analysis of atmospheric effects on the continuous variable quantum key distribution
Tao Liu(刘涛), Shuo Zhao(赵硕), Ivan B. Djordjevic, Shuyu Liu(刘舒宇), Sijia Wang(王思佳), Tong Wu(吴彤), Bin Li(李斌), Pingping Wang(王平平), and Rongxiang Zhang(张荣香). Chin. Phys. B, 2022, 31(11): 110303.
[5] Improving the purity of heralded single-photon sources through spontaneous parametric down-conversion process
Jing Wang(王静), Chun-Hui Zhang(张春辉), Jing-Yang Liu(刘靖阳), Xue-Rui Qian(钱雪瑞), Jian Li(李剑), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(7): 070304.
[6] Practical decoy-state BB84 quantum key distribution with quantum memory
Xian-Ke Li(李咸柯), Xiao-Qian Song(宋小谦), Qi-Wei Guo(郭其伟), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2021, 30(6): 060305.
[7] Deterministic nondestructive state analysis for polarization-spatial-time-bin hyperentanglement with cross-Kerr nonlinearity
Hui-Rong Zhang(张辉荣), Peng Wang(王鹏), Chang-Qi Yu(于长琦), and Bao-Cang Ren(任宝藏). Chin. Phys. B, 2021, 30(3): 030304.
[8] Hierarchical simultaneous entanglement swapping for multi-hop quantum communication based on multi-particle entangled states
Guang Yang(杨光, Lei Xing(邢磊), Min Nie(聂敏), Yuan-Hua Liu(刘原华), and Mei-Ling Zhang(张美玲). Chin. Phys. B, 2021, 30(3): 030301.
[9] New semi-quantum key agreement protocol based on high-dimensional single-particle states
Huan-Huan Li(李欢欢), Li-Hua Gong(龚黎华), and Nan-Run Zhou(周南润). Chin. Phys. B, 2020, 29(11): 110304.
[10] Heralded entanglement purification protocol using high-fidelity parity-check gate based on nitrogen-vacancy center in optical cavity
Lu-Cong Lu(陆路聪), Guan-Yu Wang(王冠玉), Bao-Cang Ren(任宝藏), Mei Zhang(章梅), Fu-Guo Deng(邓富国). Chin. Phys. B, 2020, 29(1): 010305.
[11] Deterministic hierarchical joint remote state preparation with six-particle partially entangled state
Na Chen(陈娜), Bin Yan(颜斌), Geng Chen(陈赓), Man-Jun Zhang(张曼君), Chang-Xing Pei(裴昌幸). Chin. Phys. B, 2018, 27(9): 090304.
[12] Quantum photonic network on chip
Qun-Yong Zhang(张群永), Ping Xu(徐平), Shi-Ning Zhu(祝世宁). Chin. Phys. B, 2018, 27(5): 054207.
[13] Cancelable remote quantum fingerprint templates protection scheme
Qin Liao(廖骎), Ying Guo(郭迎), Duan Huang(黄端). Chin. Phys. B, 2017, 26(9): 090302.
[14] Multi-copy entanglement purification with practical spontaneous parametric down conversion sources
Shuai-Shuai Zhang(张帅帅), Qi Shu(祁舒), Lan Zhou(周澜), Yu-Bo Sheng(盛宇波). Chin. Phys. B, 2017, 26(6): 060307.
[15] Continuous variable quantum key distribution
Yong-Min Li(李永民), Xu-Yang Wang(王旭阳), Zeng-Liang Bai(白增亮), Wen-Yuan Liu(刘文元), Shen-Shen Yang(杨申申), Kun-Chi Peng(彭堃墀). Chin. Phys. B, 2017, 26(4): 040303.
No Suggested Reading articles found!