Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 120203    DOI: 10.1088/1674-1056/20/12/120203
GENERAL Prev   Next  

Forced solitary Rossby waves under the influence of slowly varying topography with time

Yang Hong-Wei(杨红卫)a), Yin Bao-Shu(尹宝树) b)c)†, Yang De-Zhou(杨徳周)b)c), and Xu Zhen-Hua(徐振华)b)c)
a College of Information Science and Engineering, Shandong University of Science and Technology, Qingdao 266510, China; b Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, ChinaKey Laboratory of Ocean Circulation and Wave, Chinese Academy of Sciences, Qingdao 266071, China
Abstract  By using a weakly nonlinear and perturbation method, the generalized inhomogeneous Korteweg-de Vries (KdV)-Burgers equation is derived, which governs the evolution of the amplitude of Rossby waves under the influence of dissipation and slowly varying topography with time. The analysis indicates that dissipation and slowly varying topography with time are important factors in causing variation in the mass and energy of solitary waves.
Keywords:  slowly varying topography      dissipation      generalized inhomogeneous Korteweg-de Vries(KdV)-Burgers equation      forced solitary Rossby waves  
Received:  10 May 2011      Revised:  18 July 2011      Accepted manuscript online: 
PACS:  02.30.Jr (Partial differential equations)  
  47.35.Fg (Solitary waves)  
  92.10.Hm (Ocean waves and oscillations)  
Fund: Project supported by the Knowledge Innovation Key Program of the Chinese Academy of Sciences (Grant No. KZCX1-YW-12) and the National Key Science Foundation of China (Grant No. 41030855).

Cite this article: 

Yang Hong-Wei(杨红卫), Yin Bao-Shu(尹宝树), Yang De-Zhou(杨徳周), and Xu Zhen-Hua(徐振华) Forced solitary Rossby waves under the influence of slowly varying topography with time 2011 Chin. Phys. B 20 120203

[1] Philander S G H 1978 Rev. Geop. Space Phys. 16 15246
[2] Long R 1964 J. Atmos. Sci. 21 197
[3] Benney D J 1966 J. Math. Phys. 45 52
[4] Redekopp L G 1977 J. Fluid Mech. 82 725
[5] Wadati M 1973 J. Phys. Soc. Jpn. 34 1289
[6] Boyd J P 1980 J. Phys. Ocean. 10 1699
[7] Boyd J P 1980 J. Phys. Ocean. 13 428
[8] Luo D H 1991 Acta Meteor. Sin. 5 587
[9] Luo D H 1995 J. Appl. Meteor. 6 220
[10] Tan B K and Wu R S 1995 Sci. Atmos. Sin. 19 289 (in Chinese)
[11] Meng L and Lü K L 2000 Chin. J. Comput. Phys. bf17 259
[12] Yang L G, Da C J, Song J, Zhong H Q, Yang H L and Hou Y J 2008 Chin. J. Ocean. Limn. 26 334
[13] Song J and Yang L G 2009 Chin. Phys. B 18 2873
[14] Song J, Jiang N and Yang L G 2011 Acta Phys. Sin. 60 024701 (in Chinese)
[15] Shi Y F, Liu S Y, Shangguan D H, Li D L, Ye B S and Shen Y P 2006 Adv. Clim. Chan. Res. 2 154 (in Chinese)
[16] Zhuang L H, Yan J and Chang F M 2003 Meri. Geol. Lett. 19 14 (in Chinese)
[17] Meng L and Lü K L 2002 Chin. J. Comput. Phys. 19 159
[18] Lü K L and Jiang H S 1998 J. Appl. Mete. Sci. 9 431 (in Chinese)
[19] Yang H W, Wang Y H and Zhao W C 2010 Ann. Diff. Eqs. 26 465
[20] Fu Z T, Liu S D, Liu S S and Zhao Q 2004 Appl. Math. Mech. 25 67 (in Chinese)
[1] Theoretical and experimental study of phase optimization of tapping mode atomic force microscope
Zheng Wei(魏征), An-Jie Peng(彭安杰), Feng-Jiao Bin(宾凤姣), Ya-Xin Chen(陈亚鑫), and Rui Guan(关睿). Chin. Phys. B, 2022, 31(7): 076801.
[2] Influences of Marangoni convection and variable magnetic field on hybrid nanofluid thin-film flow past a stretching surface
Noor Wali Khan, Arshad Khan, Muhammad Usman, Taza Gul, Abir Mouldi, and Ameni Brahmia. Chin. Phys. B, 2022, 31(6): 064403.
[3] Shedding vortex simulation method based on viscous compensation technology research
Hao Zhou(周昊), Lei Wang(汪雷), Zhang-Feng Huang(黄章峰), and Jing-Zhi Ren(任晶志). Chin. Phys. B, 2022, 31(4): 044702.
[4] Optimized pulse for stimulated Raman adiabatic passage on noisy experimental platform
Zhi-Ling Wang(王志凌), Leiyinan Liu(刘雷轶男), and Jian Cui(崔健). Chin. Phys. B, 2021, 30(8): 080305.
[5] Quantum dynamics on a lossy non-Hermitian lattice
Li Wang(王利), Qing Liu(刘青), and Yunbo Zhang(张云波). Chin. Phys. B, 2021, 30(2): 020506.
[6] Dissipative preparation of multipartite Greenberger-Horne-Zeilinger states of Rydberg atoms
Chong Yang(杨崇), Dong-Xiao Li(李冬啸), and Xiao-Qiang Shao(邵晓强). Chin. Phys. B, 2021, 30(2): 023201.
[7] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[8] Characteristics of AlGaN/GaN high electron mobility transistors on metallic substrate
Minglong Zhao(赵明龙), Xiansheng Tang(唐先胜), Wenxue Huo(霍雯雪), Lili Han(韩丽丽), Zhen Deng(邓震), Yang Jiang(江洋), Wenxin Wang(王文新), Hong Chen(陈弘), Chunhua Du(杜春花), Haiqiang Jia(贾海强). Chin. Phys. B, 2020, 29(4): 048104.
[9] Damping of displaced chaotic light field in amplitude dissipation channel
Ke Zhang(张科), Lan-Lan Li(李兰兰), and Hong-Yi Fan(范洪义)†. Chin. Phys. B, 2020, 29(10): 100302.
[10] Dissipative generation for steady-state entanglement of two transmons in circuit QED
Shuang He(何爽), Dan Liu(刘丹), Ming-Hao Li(李明浩). Chin. Phys. B, 2019, 28(8): 080303.
[11] Second order conformal multi-symplectic method for the damped Korteweg-de Vries equation
Feng Guo(郭峰). Chin. Phys. B, 2019, 28(5): 050201.
[12] Effect of different bending shapes on thermal properties of flexible light-emitting diode filament
Liping Wang(王立平), Wenbo Li(李文博), Yichao Xu(徐一超), Bobo Yang(杨波波), Mingming Shi(石明明), Jun Zou(邹军), Yang Li(李杨), Xinglu Qian(钱幸璐), Fei Zheng(郑飞), Lei Yang(杨磊). Chin. Phys. B, 2018, 27(11): 110701.
[13] Numerical study of heat-transfer in two-and quasi-two-dimensional Rayleigh-Bénard convection
Zhen-Yuan Gao(高振源), Jia-Hui Luo(罗嘉辉), Yun Bao(包芸). Chin. Phys. B, 2018, 27(10): 104702.
[14] Scanning the energy dissipation process of energetic materials based on excited state relaxation and vibration-vibration coupling
Wen-Yan Wang(王文岩), Ning Sui(隋宁), Li-Quan Zhang(张里荃), Ying-Hui Wang(王英惠), Lin Wang(王琳), Quan Wang(王权), Jiao Wang(王娇), Zhi-Hui Kang(康智慧), Yan-Qiang Yang(杨延强), Qiang Zhou(周强), Han-Zhuang Zhang(张汉壮). Chin. Phys. B, 2018, 27(10): 104205.
[15] Analyses of an air conditioning system with entropy generation minimization and entransy theory
Yan-Qiu Wu(吴艳秋), Li Cai(蔡黎), Hong-Juan Wu(吴鸿娟). Chin. Phys. B, 2016, 25(6): 060507.
No Suggested Reading articles found!