Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 114211    DOI: 10.1088/1674-1056/20/11/114211
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Tight focus of a radially polarized and amplitude- modulated annular multi-Gaussian beam

Chen Jian-Nong(陈建农)a)†, Xu Qin-Feng(徐钦峰)a), and Wang Gang(王刚)b)
a School of Physics, Ludong University, Yantai 264025, China; b School of Electrical and Electronic Engineering, Ludong University, Yantai 264025, China
Abstract  The focusing of a radially polarized beam without annular apodization ora phase filter at the entrance pupil of the objective results in a wide focus and low purity of the longitudinally polarized component. However, the presence of a physical annular apodization or phase filter makes some applications more difficult or even impossible. We propose a radially polarized and amplitude-modulated annular multi-Gaussian beam mode. Numerical simulation shows that it can be focused into a sharper focal spot of 0.125$\lambda^2$ without additional apodizations or filters. The beam quality describing the purity of longitudinally polarized component is up to 86%.
Keywords:  focusing      polarization      laser beam  
Received:  02 March 2011      Revised:  16 June 2011      Accepted manuscript online: 
PACS:  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
  41.20.Jb (Electromagnetic wave propagation; radiowave propagation)  
  42.25.Ja (Polarization)  
  42.30.Lr (Modulation and optical transfer functions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11074105), the Natural Science Foundation of Shandong Province, China (Grant No. ZR2010AM038), the Precision Instruments Upgrade Transforming Fund of Shandong Province, China (Grant No. 2010GJC20808-16), and the Research Fund of Education Department of Shandong Province, China (Grant No. J11LA11).

Cite this article: 

Chen Jian-Nong(陈建农), Xu Qin-Feng(徐钦峰), and Wang Gang(王刚) Tight focus of a radially polarized and amplitude- modulated annular multi-Gaussian beam 2011 Chin. Phys. B 20 114211

[1] Sheppard C J R and Choudhury A 2004 Appl. Opt. 43 4322
[2] Richards B and Wolf E 1959 Proc. R. Soc. Lond. A 253 358
[3] Chon J W M, Gan X S and Gu M 2002 Appl. Phys. Lett. 81 1576
[4] Cooper I J, Roy M and Sheppard C J R 2005 Opt. Express 13 1066
[5] Djenan G, Gan X S and Gu M 2003 Opt. Express 11 2747
[6] Youngworth K S and Brown T G 2000 Opt. Express. 7 77
[7] Wang H F, Shi L P, Yuan G Q, Miao X S, Tan W L and Chong T C 2006 Appl. Phys. Lett. 89 171102
[8] Xu K, Yang Y F, He Y, Han X H and Li C F 2010 Acta Phys. Sin. 59 6126 (in Chinese)
[9] Luo Y M and Lü B D 2009 Acta Phys. Sin. 58 3915 (in Chinese)
[10] Yu Y J, Chen J N, Yan J L and Wang F F 2011 Acta Phys. Sin. 60 044205 (in Chinese)
[11] Norihiko H, Yuika S and Satoshi K 2004 Appl. Phys. Lett. 85 6239
[12] Zhuang J J 1984 Acta Phys. Sin. 33 1255 (in Chinese)
[13] Sánchez E J, Novotny L and Xie X S 1999 Phys. Rev. Lett. 82 4014
[14] Fortana J R and Pantell R H 1983 J. Appl. Phys. 54 4285
[15] Yew E Y S and Sheppard C J R 2007 Opt. Commun. 275 453
[16] Kang H, Jia B H, Li J L, Morrish D and Gu M 2010 Appl. Phys. Lett. 96 063702
[17] Novotny L, Beversluis M R, Youngworth K S and Brown T G 2001 Phys. Rev. Lett. 86 5251
[18] Sick B, Hecht B and Novotny L 2000 Phys. Rev. Lett. 85 4482
[19] Huse N, Schönle A and Hell S W 2001 J. Biomed. Opt. 6 480
[20] Dorn R, Quabis S and Leuchs G 2003 Phys. Rev. Lett. 91 233901
[21] Soroko L M, in: Wolf E ed. 1989 Progress in Optics (Amsterdam: Elsevier) p. 28
[22] Soroko L M 1996 Meso-Optics (Singapore: World Scientific) pp. 5-19
[23] Botcherby E J, Juskaitis J and Wilson T 2006 Opt. Commun. 268 253
[24] Wang H F, Shi L P, Lukyanchuk B, Sheppard C and Chong C T 2008 Nature Photonics 2 501
[1] Polarization Raman spectra of graphene nanoribbons
Wangwei Xu(许望伟), Shijie Sun(孙诗杰), Muzi Yang(杨慕紫), Zhenliang Hao(郝振亮), Lei Gao(高蕾), Jianchen Lu(卢建臣), Jiasen Zhu(朱嘉森), Jian Chen(陈建), and Jinming Cai(蔡金明). Chin. Phys. B, 2023, 32(4): 046803.
[2] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[3] Atomic optical spatial mode extractor for vector beams based on polarization-dependent absorption
Hong Chang(常虹), Xin Yang(杨欣), Jinwen Wang(王金文), Yan Ma(马燕), Xinqi Yang(杨鑫琪), Mingtao Cao(曹明涛), Xiaofei Zhang(张晓斐), Hong Gao(高宏), Ruifang Dong(董瑞芳), and Shougang Zhang(张首刚). Chin. Phys. B, 2023, 32(3): 034207.
[4] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[5] Spin- and valley-polarized Goos-Hänchen-like shift in ferromagnetic mass graphene junction with circularly polarized light
Mei-Rong Liu(刘美荣), Zheng-Fang Liu(刘正方), Ruo-Long Zhang(张若龙), Xian-Bo Xiao(肖贤波), and Qing-Ping Wu(伍清萍). Chin. Phys. B, 2023, 32(3): 037301.
[6] Bidirectional visible light absorber based on nanodisk arrays
Qi Wang(王琦), Fei-Fan Zhu(朱非凡), Rui Li(李瑞), Shi-Jie Zhang(张世杰), and Da-Wei Zhang(张大伟). Chin. Phys. B, 2023, 32(3): 030205.
[7] Laser shaping and optical power limiting of pulsed Laguerre-Gaussian laser beams of high-order radial modes in fullerene C60
Jie Li(李杰), Wen-Hui Guan(管文慧), Shuo Yuan(袁烁), Ya-Nan Zhao(赵亚男), Yu-Ping Sun(孙玉萍), and Ji-Cai Liu(刘纪彩). Chin. Phys. B, 2023, 32(2): 024203.
[8] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[9] Tightly focused properties of a partially coherent radially polarized power-exponent-phase vortex beam
Kang Chen(陈康), Zhi-Yuan Ma(马志远), and You-You Hu(胡友友). Chin. Phys. B, 2023, 32(2): 024208.
[10] A simulation study of polarization characteristics of ultrathin CsPbBr3 nanowires with different cross-section shapes and sizes
Kang Yang(杨康), Huiqing Hu(胡回清), Jiaojiao Wang(王娇娇), Lingling Deng(邓玲玲), Yunqing Lu(陆云清), and Jin Wang(王瑾). Chin. Phys. B, 2023, 32(2): 024214.
[11] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[12] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[13] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[14] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[15] Evolution of polarization singularities accompanied by avoided crossing in plasmonic system
Yi-Xiao Peng(彭一啸), Qian-Ju Song(宋前举), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and De-Zhuan Han(韩德专). Chin. Phys. B, 2023, 32(1): 014201.
No Suggested Reading articles found!