Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 114210    DOI: 10.1088/1674-1056/20/11/114210
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Dependence of curvature type of thermal lensing on number of bounces in a zigzag slab laser: numerical modeling

Fu Xing(付星), Liu Qiang(柳强), Yan Xing-Peng(闫兴鹏), and Gong Ma-Li(巩马理)
State Key Laboratory of Tribology, Center for Photonics and Electronics, Department of Precision Instruments, Tsinghua University, Beijing 100084, China
Abstract  The curvature type of the thermal lens generated in a zigzag slab laser is numerically analysed. It is found that the curvature type of the thermal lens varies alternatively between the convex and the concave lenses with the number of bounces of light within the slab, which can be well explained by the trace of the zigzag propagation. In addition, we conclude that the beamlet with a larger number of bounces experiences weaker thermal lensing but more serious wavefront deformation due to the large side lobe portion in the curve of optical path difference.
Keywords:  thermal lensing      zigzag slab laser      curvature type  
Received:  03 March 2011      Revised:  20 April 2011      Accepted manuscript online: 
PACS:  42.55.Xi (Diode-pumped lasers)  
  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50721004 and 60978032).

Cite this article: 

Fu Xing(付星), Liu Qiang(柳强), Yan Xing-Peng(闫兴鹏), and Gong Ma-Li(巩马理) Dependence of curvature type of thermal lensing on number of bounces in a zigzag slab laser: numerical modeling 2011 Chin. Phys. B 20 114210

[1] Shine R J, Aifrey A J and Byer R L 1995 Proc. SPIE 2379 112
[2] Mandl A, Zavriyev A, Klinmek D E and Ewing J J 1997 IEEE J. Quantum Electron. 33 1864
[3] Tei K, Kato M, Niwa Y, Harayama S, Maruyana Y, Matoba T and Arisawa T 1998 Opt. Lett. 23 514
[4] Eggleston J M, Albercht G F, Petr R A and Zumdieck J F 1986 IEEE J. Quantum Electron. 22 2092
[5] Goodno G D, Komine H, McNaught S J, Weiss S B, Redmond S, Long W, Simpson R, Cheung E C, Howland D, Epp P, Weber M, McClellan M, Sollee J and Injeyan H 2006 Opt. Lett. 31 1247
[6] Yasuhara R, Kawashima T, Sekine T, Kurita T, Ikegawa T, Malsumoto O, Miyamoto M, Kan H, Yoshida H, Kawanaka J, Nakatsuka M, Miyanaga N, Izawa Y and Kanabe T 2008 Opt. Lett. 33 1711
[7] Sridharan A K, Saraf S, Sinha S and Byer R L 2006 Appl. Opt. 45 3340
[8] Fu X, Liu Q, Yan X P, Cui J Y and Gong M L 2010 Laser Phys. 20 1707
[9] Fu X, Liu Q, Yan X P, Cui J Y and Gong M L 2011 Laser Phys. 21 48
[10] Shoup M J, Kelly J H and Smith D L 1997 Appl. Opt. 36 5827
[11] Chen B, Chen Y, Simmons J, Chung T Y and Bass M 2006 Appl. Phys. B 82 413
[12] Chung T and Bass M 2007 Appl. Opt. 46 581
[13] Fu X, Liu Q, Yan X P, Cui J Y and Gong M L 2009 Chin. Opt. Lett. 7 6
[15] Koechner W 1970 Appl. Opt. 9 2548
[16] Bermudez J, Pinto-Robledo V, Kiryanov A and Damzen M 2002 Opt. Commun. 210 75
[17] Macdonald M, Graf T, Balmer J and Weber H 2000 Opt. Commun. 178 383
[14] Xiong Z, Li Z, Moore N, Huang W and Lim G 2003 IEEE J. Quantum Electron. 39 979
[18] Goodno G, Palese S, Harkenrider J and Injeyan H 2001 Opt. Lett. 26 1672
[1] Improvement of 2.79-μm laser performance on laser diode side-pumped GYSGG/Er,Pr: GYSGG bonding rod with concave end-faces
Xu-Yao Zhao(赵绪尧), Dun-Lu Sun(孙敦陆), Jian-Qiao Luo(罗建乔), Hui-Li Zhang(张会丽), Zhong-Qing Fang(方忠庆), Cong Quan(权聪), Lun-Zhen Hu(胡伦珍), Zhi-Yuan Han(韩志远), Mao-Jie Cheng(程毛杰), Shao-Tang Yin(殷绍唐). Chin. Phys. B, 2019, 28(11): 114208.
[2] Concentration dependent nonlinear refraction in chloroaluminum phthalocyanine/ethanol solution
Yang Jun-Yi(杨俊义), Song Ying-Lin(宋瑛林), and Gu Ji-Hua(顾济华). Chin. Phys. B, 2009, 18(7): 2828-2834.
No Suggested Reading articles found!