Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 114206    DOI: 10.1088/1674-1056/20/11/114206
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Adjusting the properties of the photon generated via an optical parametric oscillator by using a pulse pumped laser

Chen Song(陈嵩), Shi Bao-Sen(史保森), and Guo Guang-Can(郭光灿)
Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
Abstract  The cavity-enhanced spontaneous parametric down-conversion far below threshold can be used to generate a narrow-band photon pair efficiently. Previous experiments on the cavity-enhanced spontaneous parametric down-conversion almost always utilize continuous wave pump light, but the pulse pumped case is rarely reported. One disadvantage of the continuous wave case is that the photon pair is produced randomly within the coherence time of the pump, which limits its application in the quantum information realm. However, a pulse pump can help to solve this problem. In this paper, we theoretically analyze pulse pumped cavity-enhanced spontaneous parametric down-conversion in detail and show how the pump pulse affects the multi-photon interference visibility, two-photon waveform, joint spectrum and spectral brightness.
Keywords:  spontaneous parametric down-conversion      photon      pulse pumped      quantum optics  
Received:  30 March 2011      Revised:  02 June 2011      Accepted manuscript online: 
PACS:  42.50.Dv (Quantum state engineering and measurements)  
  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10874171), the National Basic Research Program of China (Grant No. 2009CB929601), the Innovation Fund from Chinese Academy of Sciences, and the Program for New Century Excellent Talents in University of China (Grant No. NCET-07-0791).

Cite this article: 

Chen Song(陈嵩), Shi Bao-Sen(史保森), and Guo Guang-Can(郭光灿) Adjusting the properties of the photon generated via an optical parametric oscillator by using a pulse pumped laser 2011 Chin. Phys. B 20 114206

[1] Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L, Hu E and Imamovglu A 2000 Science 290 2282
[2] Kurtsiefer C, Mayer S, Zarda P and Weinfurter H 2000 Phys. Rev. Lett. 85 290
[3] Wilk T, Webster S C, Specht H P, Rempe G and Kuhn A 2007 Phys. Rev. Lett. 98 063601
[4] Burnham D C and Weinberg D L 1970 Phys. Rev. Lett. 25 84
[5] Friberg S, Hong C K and Mandel L 1985 Phys. Rev. Lett. 54 2011
[6] Shi B S and Tomita A 2004 Phys. Rev. A 69 013803
[7] Shi B S and Tomita A 2004 Opt. Commun. 235 247
[8] Shi B S, Wang F Y, Zhai C and Guo G C 2008 Opt. Commun. 281 3390
[9] Ou Z Y and Lu Y J 1999 Phys. Rev. Lett. 83 2556
[10] Wang F Y, Shi B S and Guo G C 2008 Opt. Commun. 33 2191
[11] Wang F Y, Shi B S and Guo G C 2010 Opt. Commun. 283 2974
[12] Shi B S, Zhai C, Wang F Y and Guo G C 2010 Front. Phys. China 5 131
[13] Bao X H, Qian Y, Yang J, Zhang H, Chen Z B, Yang T and Pan J W 2008 Phys. Rev. Lett. 101 190501
[14] Scholz M, Koch L, Ullmann R and Benson O 2009 Appl. Phys. Lett. 94 201105
[15] Neergaard-Nielsen J S, Nielsen B M, Takahashi H, Vistnes A I and Polzik E S 2007 Opt. Express 15 7940
[16] Nielsen B M, Neergaard-Nielsen J S and Polzik E S 2009 Opt. Lett. 34 3872
[17] Jin X M, Yang J, Zhang H, Dai H N, Yang S J, Zhao T M, Rui J, He Y, Jiang X, Yang F, Pan G S, Yuan Z S, Deng Y J, Chen Z B, Bao X H, Zhao B, Chen S and Pan J W 2010 arXiv: quant-ph/1004.4691
[18] Ou Z Y, Rhee J K and Wang L J 1999 Phys. Rev. A 60 593
[19] Braunstein S L and van Loock P 2005 Rev. Mod. Phys. 77 513
[20] Gorshkov A V, André A, Lukin M D and Sorensen A S 2007 Phys. Rev. A 76 033804
[21] Kolchin P, Belthangady C, Du S, Yin G Y and Harris S E 2008 Phys. Rev. Lett. 101 103601
[22] Hendrych M, Shi X J, Valencia A and Torres J P 2009 Phys. Rev. A 79 023817
[23] Peér A, Dayan B, Friesem A A and Silberberg Y 2005 Phys. Rev. Lett. 94 073601
[24] Balić V, Braje D A, Kolchin P, Yin G Y and Harris S E 2005 Phys. Rev. Lett. 94 183601
[25] Du S, Wen J M and Belthangady C 2009 Phys. Rev. A 79 043811
[26] Mikhailova Y M, Volkov P A and Fedorov M V 2008 Phys. Rev. A 78 062327
[27] Kalachev A 2010 Phys. Rev. A 81 043809
[28] Ou Z Y 1997 Quantum. Semiclass. Opt. 9 599
[29] Jeronimo-Moreno Y, Rodriguez-Benavides S and U'Ren A B 2010 Laser Phys. 20 1221
[30] Kim Y H and Grice W P 2005 Opt. Lett. 30 908
[31] Grice W P and Walmsley I A 1997 Phys. Rev. A 56 1627
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[4] Wavelength- and ellipticity-dependent photoelectron spectra from multiphoton ionization of atoms
Keyu Guo(郭珂雨), Min Li(黎敏), Jintai Liang(梁锦台), Chuanpeng Cao(曹传鹏), Yueming Zhou(周月明), and Peixiang Lu((陆培祥). Chin. Phys. B, 2023, 32(2): 023201.
[5] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[6] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[7] Spatially modulated scene illumination for intensity-compensated two-dimensional array photon-counting LiDAR imaging
Jiaheng Xie(谢佳衡), Zijing Zhang(张子静), Mingwei Huang(黄明维),Jiahuan Li(李家欢), Fan Jia(贾凡), and Yuan Zhao(赵远). Chin. Phys. B, 2022, 31(9): 090701.
[8] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[9] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[10] How graph features decipher the soot assisted pigmental energy transport in leaves? A laser-assisted thermal lens study in nanobiophotonics
S Sankararaman. Chin. Phys. B, 2022, 31(8): 088201.
[11] Manipulation of nonreciprocal unconventional photon blockade in a cavity-driven system composed of an asymmetrical cavity and two atoms with weak dipole-dipole interaction
Xinqin Zhang(张新琴), Xiuwen Xia(夏秀文), Jingping Xu(许静平), Haozhen Li(李浩珍), Zeyun Fu(傅泽云), and Yaping Yang(羊亚平). Chin. Phys. B, 2022, 31(7): 074204.
[12] Switchable down-, up- and dual-chirped microwave waveform generation with improved time-bandwidth product based on polarization modulation and phase encoding
Yuxiao Guo(郭玉箫), Muguang Wang(王目光), Hongqian Mu(牟宏谦), and Guofang Fan(范国芳). Chin. Phys. B, 2022, 31(7): 078403.
[13] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
[14] Simulating the resonance-mediated (1+2)-three-photon absorption enhancement in Pr3+ ions by a rectangle phase modulation
Wenjing Cheng(程文静), Yuan Li(李媛), Hongzhen Qiao(乔红贞), Meng Wang(王蒙), Shaoshuo Ma(马绍朔), Fangjie Shu(舒方杰), Chuanqi Xie(解传奇), and Guo Liang(梁果). Chin. Phys. B, 2022, 31(6): 063201.
[15] Efficient quantum private comparison protocol utilizing single photons and rotational encryption
Tian-Yi Kou(寇天翊), Bi-Chen Che(车碧琛), Zhao Dou(窦钊), Xiu-Bo Chen(陈秀波), Yu-Ping Lai(赖裕平), and Jian Li(李剑). Chin. Phys. B, 2022, 31(6): 060307.
No Suggested Reading articles found!