Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 110502    DOI: 10.1088/1674-1056/20/11/110502
GENERAL Prev   Next  

Optimization-based topology identification of complex networks

Tang Sheng-Xue(唐圣学)a)†, Chen Li(陈丽) a), and He Yi-Gang(何怡刚)b)
a Province-Ministry Joint Key Laboratory of Electromagnetic Field and Electrical Apparatus Reliability, Hebei University of Technology, Tianjin 300130, China; b College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
Abstract  In many cases, the topological structures of a complex network are unknown or uncertain, and it is of significance to identify the exact topological structure. An optimization-based method of identifying the topological structure of a complex network is proposed in this paper. Identification of the exact network topological structure is converted into a minimal optimization problem by using the estimated network. Then, an improved quantum-behaved particle swarm optimization algorithm is used to solve the optimization problem. Compared with the previous adaptive synchronization-based method, the proposed method is simple and effective and is particularly valid to identify the topological structure of synchronization complex networks. In some cases where the states of a complex network are only partially observable, the exact topological structure of a network can also be identified by using the proposed method. Finally, numerical simulations are provided to show the effectiveness of the proposed method.
Keywords:  complex networks      topology identification      optimization      particle swarm  
Received:  28 August 2010      Revised:  23 June 2011      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
Fund: Project supported by the National Natural Science Foundation for Distinguished Young Scholars of China (Grant No. 50925727) and the National Natural Science Foundation of China (Grant No. 60876022).

Cite this article: 

Tang Sheng-Xue(唐圣学), Chen Li(陈丽), and He Yi-Gang(何怡刚) Optimization-based topology identification of complex networks 2011 Chin. Phys. B 20 110502

[1] Buldyrev S V, Parshani R, Paul G, Stanley H E and Havlin S 2010 Nature 464 1025
[2] Albert R, Jeong H and Barabasi A L 1999 Nature 410 130
[3] Jeong H, Tombor B, Albert R, Oltvai Z N and Barabasi A L 2000 Nature 407 651
[4] Zhu Z T, Zhou J, Li P and Chen X G 2008 Chin. Phys. B 17 2874
[5] Zhang Z, Fu Z Q and Yan G 2009 Chin. Phys. B 18 2209
[6] Chen G, Zhou J and Liu Z 2004 Int. J. Bifur. Chaos 14 2229
[7] Barabasi A L and Albert R 1999 Science 286 509
[8] Watts D J and Strogatz S H 1998 Nature 393 440
[9] Boccaletti S, Latora V, Moreno Y, Chavezf M and Hwang D U 2006 Phys. Rep. 424 175
[10] Butts C T 2009 Science 325 414
[11] Wu J S, Jiao L C and Chen G R 2011 Chin. Phys. B 20 060503
[12] Pei W D, Chen Z Q and Yuan Z Z 2008 Chin. Phys. B 17 373
[13] Zhou J and Lu J A 2007 Physica A 386 481
[14] Liu H, Song Y R, Fan C X and Jiang G P 2010 Chin. Phys. B 19 070508
[15] Xu Y H, Zhou W N, Fang J A and Lu H Q 2009 Phys. Lett. A 374 272
[16] Chen L, Lu J A and Tse C K 2009 IEEE. Trans. Circuit Syst. II 56 310
[17] Wu X Q 2008 Physica A 387 997
[18] Hong W Y, Suo W and Ping G 2010 Acta Electron. Sin. 38 1065 (in Chinese)
[19] Liu H, Lu J A, Lu J H and Hill D J 2009 Automatica 45 1799
[20] Kennedy J and Eberhart R 1995 Proceedings of IEEE International Conference on Neural Networks (Piscataway: IEEE) p. 1942
[21] Xi M L, Sun J and Xu W B 2008 Appl. Math. Comput. 205 751
[22] Fang W, Sun J, Xie Z P and Xu W B 2010 Acta Phys. Sin. 59 3686 (in Chinese)
[23] Sun J, Xu W B and Feng B 2005 IEEE International Conference on Systems, Man and Cybernetics (Hawaii: IEEE) p. 3049
[1] Performance optimization on finite-time quantum Carnot engines and refrigerators based on spin-1/2 systems driven by a squeezed reservoir
Haoguang Liu(刘浩广), Jizhou He(何济洲), and Jianhui Wang(王建辉). Chin. Phys. B, 2023, 32(3): 030503.
[2] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[3] Comparison of differential evolution, particle swarm optimization, quantum-behaved particle swarm optimization, and quantum evolutionary algorithm for preparation of quantum states
Xin Cheng(程鑫), Xiu-Juan Lu(鲁秀娟), Ya-Nan Liu(刘亚楠), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(2): 020202.
[4] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[5] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[6] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[7] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[8] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[9] Thermal apoptosis analysis considering injection behavior optimization and mass diffusion during magnetic hyperthermia
Yun-Dong Tang(汤云东), Jian Zou(邹建), Rodolfo C C Flesch(鲁道夫 C C 弗莱施), Tao Jin(金涛), and Ming-Hua He(何明华). Chin. Phys. B, 2022, 31(1): 014401.
[10] Probing structural and electronic properties of divalent metal Mgn+1 and SrMgn (n = 2–12) clusters and their anions
Song-Guo Xi(奚松国), Qing-Yang Li(李青阳), Yan-Fei Hu(胡燕飞), Yu-Quan Yuan(袁玉全), Ya-Ru Zhao(赵亚儒), Jun-Jie Yuan(袁俊杰), Meng-Chun Li(李孟春), and Yu-Jie Yang(杨雨杰). Chin. Phys. B, 2022, 31(1): 016106.
[11] Topology optimization method of metamaterials design for efficient enhanced transmission through arbitrary-shaped sub-wavelength aperture
Pengfei Shi(史鹏飞), Yangyang Cao(曹阳阳), Hongge Zhao(赵宏革), Renjing Gao(高仁璟), and Shutian Liu(刘书田). Chin. Phys. B, 2021, 30(9): 097806.
[12] Erratum to “Designing thermal demultiplexer: Splitting phonons by negative mass and genetic algorithm optimization”
Yu-Tao Tan(谭宇涛), Lu-Qin Wang(王鲁钦), Zi Wang(王子), Jiebin Peng(彭洁彬), and Jie Ren(任捷). Chin. Phys. B, 2021, 30(9): 099902.
[13] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[14] Large-area fabrication: The next target of perovskite light-emitting diodes
Hang Su(苏杭), Kun Zhu(朱坤), Jing Qin(钦敬), Mengyao Li(李梦瑶), Yulin Zuo(左郁琳), Yunzheng Wang(王允正), Yinggang Wu(吴迎港), Jiawei Cao(曹佳维), and Guolong Li(李国龙). Chin. Phys. B, 2021, 30(8): 088502.
[15] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
No Suggested Reading articles found!