Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 110302    DOI: 10.1088/1674-1056/20/11/110302
GENERAL Prev   Next  

Controlling transfer of quantum correlations among bi-partitions of a composite quantum system by combining different noisy environments

Zhang Xiu-Xing(张修兴) and Li Fu-Li(李福利)
Department of Applied Physics, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  The correlation dynamics are investigated for various bi-partitions of a composite quantum system consisting of two qubits and two independent and non-identical noisy environments. The two qubits have no direct interaction with each other and locally interact with their environments. Classical and quantum correlations including the entanglement are initially prepared only between the two qubits. We find that contrary to the identical noisy environment case, the quantum correlation transfer direction can be controlled by combining different noisy environments. The amplitude-damping environment determines whether there exists the entanglement transfer among bi-partitions of the system. When one qubit is coupled to an amplitude-damping environment and the other one to a bit-flip one, we find a very interesting result that all the quantum and the classical correlations, and even the entanglement, originally existing between the qubits, can be completely transferred without any loss to the qubit coupled to the bit-flit environment and the amplitude-damping environment. We also notice that it is possible to distinguish the quantum correlation from the classical correlation and the entanglement by combining different noisy environments.
Keywords:  quantum correlation      noisy environment  
Received:  29 January 2011      Revised:  06 May 2011      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2010CB923102), the Special Prophase Project on the National Basic Research Program of China (Grant No. 2011CB311807), and the National Natural Science Foundation of China (Grand No. 11074199).

Cite this article: 

Zhang Xiu-Xing(张修兴) and Li Fu-Li(李福利) Controlling transfer of quantum correlations among bi-partitions of a composite quantum system by combining different noisy environments 2011 Chin. Phys. B 20 110302

[1] Neilsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[3] Henderson L and Vedral V 2011 J. Phys. A 34 68899
[4] Vedral V 2003 Phys. Rev. Lett. 90 050401
[5] Lanyon B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501
[6] Knill E and Laflamme R 1992 Phys. Rev. Lett. 81 5672
[7] Oppenheim J, Horodecki M, Horodecki P and Horodecki R 2002 Phys. Rev. Lett. 89 180402
[8] Groisman B, Popescu S and Winter A 2005 Phys. Rev. A 72 032317
[9] Luo S 2008 Phys. Rev. A 77 022301
[10] Modi K, Paterek T, Son W, Vedral V and Williamson M 2010 Phys. Rev. Lett. 104 080501
[11] Chen Q Y, Fang M F, Xiao X and Zhou X F 2011 Chin. Phys. B 20 050302
[12] Wang L C, Yan J Y and Yi X X 2011 Chin. Phys. B 20 040305
[13] Maziero J, Céleri L C, Serra R M and Vedral V 2009 Phys. Rev. A 80 044102
[14] Mazhar Ali, Rau A R P and Alber G 2010 Phys. Rev. A 81 042105
[15] Dillenschneider R 2008 Phys. Rev. B 78 224413
[16] Sarandy M S 2009 Phys. Rev. A 80 022108
[17] Werlang T and Rigolin G 2010 Phys. Rev. A 81 044101
[18] Werlang T, Trippe C, Ribeiro G A P and Rigolin G 2010 Phys. Rev. Lett. 105 095702
[19] Sun Z Y, Li L, Yao K L, Du G H, Liu J W, Luo B, Li N and Li H N 2010 Phys. Rev. A 82 032310
[20] Giorda P and Paris M G A 2010 Phys. Rev. Lett. 105 020503
[21] Adesso G and Datta A 2010 Phys. Rev. Lett. 105 030501
[22] Werlang T, Souza S, Fanchini F F and Villas Boas C J 2009 Phys. Rev. A 80 024103
[23] Fanchini F F, Werlang T, Brasil C A, Arruda L G E and Caldeira A O 2010 Phys. Rev. A 81 052107
[24] Mazzola L, Piilo J and Maniscalco S 2010 arXiv: 1006.1805
[25] Mazzola L, Piilo J and Maniscalco S 2010 Phys. Rev. Lett. 104 200401
[26] Céleri L C, Landulfo A G S, Serra R M and Matsas G E A 2010 Phys. Rev. A 81 062130
[27] Fanchini F F, Castelano L K and Caldeira A O 2010 New J. Phys. 12 073009
[28] Maziero J, Werlang T, Fanchini F F, Céleri L C and Serra R M 2010 Phys. Rev. A 81 022116
[29] Xu J S, Xu X Y, Li C F, Zhang C J, Zou X B and Guo G C 2010 Nat. Commun. 1 7
[30] Xu J S, Li C F, Zhang C J, Xu X Y, Zhang Y S and Guo G C 2010 Phys. Rev. A 82 042328
[31] Soares-Pinto D O, Céleri L C, Auccaise R, Fanchini F F, de Azevedo E R, Maziero J, Bonagamba T J and Serra R M 2010 Phys. Rev. A 81 062118
[32] López C E, Romero G, Lastra F, Solano E and Retamal J C 2008 Phys. Rev. Lett. 101 080503
[33] Groisman B, Popescu S and Winter A 2005 Phys. Rev. A 72 032317
[34] Schumacher B and Westmorel M D 2006 Phys. Rev. A 74 042305
[35] Terhal B M, Horodecki M, Leung D W and DiVincenzo D P 2002 J. Math. Phys. 43 4286
[36] DiVincenzo D P, Horodecki M, Leung D W, Smolin J A and Terhal B M 2004 Phys. Rev. Lett. 92 067902
[37] Piani M, Horodecki P and Horodecki R 2008 Phys. Rev. Lett. 100 090502
[38] Piani M, Christandl M, Mora C E and Horodecki P 2009 Phys. Rev. Lett. 102 250503
[39] Leung D W 2003 J. Math. Phys. 44 528
[40] Salles A, de Melo F, Almeida M P, Hor-Meyll M, Walborn S P, Souto Ribeiro P H and Davidovich L 2008 Phys. Rev. A 78 022322
[41] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[42] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[43] Yu T and Eberly J H 2006 Phys. Rev. Lett. 96 140403
[44] Yu T and Eberly J H 2009 Science 323 598
[45] Stepanenko D, Burkard G, Giedke G and Imamoglu A 2006 Phys. Rev. Lett. 96 136401
[46] Lai C W, Maletinsky P, Badolato A and Imamoglu A 2006 Phys. Rev. Lett. 96 167403
[47] Scala M, Migliore R and Messina A 2008 J. Phys. A 41 435304
[48] Rossini D and Calarco T 2007 Phys. Rev. A 75 032333
[49] Cai J M, Zhou Z W and Guo G C 2005 Phys. Rev. A 72 022312
[50] Duan L M, Demler E and Lukin M D 2003 Phys. Rev. Lett. 9 090402
[1] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[2] Quantum correlation and entropic uncertainty in a quantum-dot system
Ying-Yue Yang(杨颖玥), Li-Juan Li(李丽娟), Liu Ye(叶柳), and Dong Wang(王栋). Chin. Phys. B, 2022, 31(10): 100303.
[3] Effects of initial states on the quantum correlations in the generalized Grover search algorithm
Zhen-Yu Chen(陈祯羽), Tian-Hui Qiu(邱田会), Wen-Bin Zhang(张文彬), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2021, 30(8): 080303.
[4] Quantum coherence and correlation dynamics of two-qubit system in spin bath environment
Hao Yang(杨豪), Li-Guo Qin(秦立国), Li-Jun Tian(田立君), Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2020, 29(4): 040303.
[5] Quantifying non-classical correlations under thermal effects in a double cavity optomechanical system
Mohamed Amazioug, Larbi Jebli, Mostafa Nassik, Nabil Habiballah. Chin. Phys. B, 2020, 29(2): 020304.
[6] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[7] Relations between tangle and I concurrence for even n-qubit states
Xin-Wei Zha(查新未), Ning Miao(苗宁), Ke Li(李轲). Chin. Phys. B, 2019, 28(12): 120304.
[8] Monogamy quantum correlation near the quantum phase transitions in the two-dimensional XY spin systems
Meng Qin(秦猛), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2018, 27(6): 060301.
[9] Quantum correlations dynamics of three-qubit states coupled to an XY spin chain:Role of coupling strengths
Shao-Ying Yin(尹少英), Qing-Xin Liu(刘庆欣), Jie Song(宋杰), Xue-Xin Xu(许学新), Ke-Ya Zhou(周可雅), Shu-Tian Liu(刘树田). Chin. Phys. B, 2017, 26(10): 100501.
[10] Optimizing quantum correlation dynamics by weak measurement in dissipative environment
Du Shao-Jiang (杜少将), Xia Yun-Jie (夏云杰), Duan De-Yang (段德洋), Zhang Lu (张路), Gao Qiang (高强). Chin. Phys. B, 2015, 24(4): 044205.
[11] Dynamical decoupling pulses on the quantum correlations for the system of superconducting quantum circuit
Wang Dong-Mei (王冬梅), Qian Yi (钱懿), Xu Jing-Bo (许晶波), Yu You-Hong (俞攸红). Chin. Phys. B, 2015, 24(11): 110304.
[12] Rise of quantum correlations in non-Markovian environments in continuous-variable systems
Liu Xin (刘辛), Wu Wei (吴薇). Chin. Phys. B, 2014, 23(7): 070303.
[13] Measurement-induced disturbance in Heisenberg XY spin model with Dzialoshinskii-Moriya interaction under intrinsic decoherence
Shen Cheng-Gao (沈诚诰), Zhang Guo-Feng (张国锋), Fan Kai-Ming (樊开明), Zhu Han-Jie (朱汉杰). Chin. Phys. B, 2014, 23(5): 050310.
[14] Correlation dynamics of a qubit–qutrit system in a spin-chain environment with Dzyaloshinsky–Moriya interaction
Yang Yang (杨阳), Wang An-Min (王安民). Chin. Phys. B, 2014, 23(2): 020307.
[15] Deterministic joint remote preparation of an arbitrary two-qubit state in the presence of noise
Chen Zhong-Fang (陈忠芳), Liu Jin-Ming (刘金明), Ma Lei (马雷). Chin. Phys. B, 2014, 23(2): 020312.
No Suggested Reading articles found!