Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 110201    DOI: 10.1088/1674-1056/20/11/110201
GENERAL   Next  

Mueller matrix analysis for all optical fiber co-existence of birefringence-polarization dependent gain-mode coupling at a single wavelength

Shang Chao(尚超), Wu Chong-Qing(吴重庆), Li Zheng-Yong(李政勇), Yang Shuang-Shou(杨双收), Gao Kai-Qiang(高凯强), Yu Kuang-Lu(余贶琭), and Feng Zhen(冯震)
Key Laboratory of Education Ministry on Luminescence and Optical Information Technology, Institute of Optical Information, Beijing Jiaotong University, Beijing 100044, China
Abstract  Birefringence (polarization-related phase-shift), polarization dependent gain (PDG) and mode coupling are three factors that may synchronously influence the transmission of single-wavelength polarized light in optical fibers. This paper obtains a new Mueller matrix analysis, which can be used under conditions that all these three factors are existing and changing. According to our transmission model, the state of polarization (SOP) changes along an optical microstructure fiber with co-existence of birefringence-PDG-mode coupling were simulated. The simulated results, which show the phenomena of SOP constringency, are in good agreement with previous theoretical analyses.
Keywords:  Mueller matrix      birefringence      polarization dependent gain      mode coupling  
Received:  14 January 2011      Revised:  05 May 2011      Accepted manuscript online: 
PACS:  02.10.Yn (Matrix theory)  
  42.81.-i (Fiber optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grants Nos. 60877057 and 60907027).

Cite this article: 

Shang Chao(尚超), Wu Chong-Qing(吴重庆), Li Zheng-Yong(李政勇), Yang Shuang-Shou(杨双收), Gao Kai-Qiang(高凯强), Yu Kuang-Lu(余贶琭), and Feng Zhen(冯震) Mueller matrix analysis for all optical fiber co-existence of birefringence-polarization dependent gain-mode coupling at a single wavelength 2011 Chin. Phys. B 20 110201

[1] Sunnerud H, Xie C J, Karlsson M, Samuelsson R and Andrekson P A 2002 J. Lightwave Technol. 20 368
[2] Erdogan A T, Demir A and Oktem T M 2008 J. Lightwave Technol. 26 1823
[3] Fu S N, Wu C Q and Shum P 2005 Chin. Phys. B 14 1591
[4] Yan H and Li G F 2005 Opt. Express 13 7527
[5] Kazovsky L G and Kalogerakis G 2006 Proc. CLEO'2006, Long Beach, CA, 2006 CMDD1
[6] Karbassian M M and Ghafouri-Shiraz H 2008 J. Lightwave Technol. 26 3820
[7] McGeehan J E, Nezam S M R M, Saghari P, Izadpanah T H, Willner A E, Omrani R and Kumar P V 2004 Proc. OFC'2004, Los Angeles, CA, 2004 EF5
[8] Zhang C, Mori Y, Igarashi K and Kikuchi K 2008 Proc.OFC/NFOEC'2008 San Diego, CA, 2008 PDP6
[9] Xiao L, Zhang W, Huang Y D and Peng J D 2008 Chin. Phys. B 17 995
[10] Goldstein D 2003 Polarized Light edn. 2 (New York: Marcel Dekker Inc.) p. 31
[11] Shurcliff W A 1962 Polarized Light (Boston: Harvard University Press) p. 109
[12] Li Z Y, Wu C Q, Dong H, Shum P, Tian C Y and Zhao S 2008 Opt. Express 16 3955
[13] Keiser G 2002 Optical Fiber Communications edn. 3 (Beijing: Higher Education Press) p. 122
[14] Dong H, Shum P, Yan M, Zhou J Q, Ning G X, Gong Y D and Wu C Q 2006 Opt. Express 14 5067
[15] Dong H, Shum P, Gong Y D and Wu C Q 2007 Opt. Lett. 32 2999
[16] Wu C Q 2005 Theory of Optical Wave-Guide edn. 2 (Beijing: Tsinghua University Press) p. 168
[17] Wu C Q and Dong H 2002 J. Lightwave Technol. 20 1604
[1] A simple and comprehensive electromagnetic theory uncovering complete picture of light transport in birefringent crystals
Jianbo Pan(潘剑波), Jianfeng Chen(陈剑锋), Lihong Hong(洪丽红), Li Long(龙利), and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(5): 054201.
[2] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
[3] Polarization manipulation of bright-dark vector bisolitons
Yan Zhou(周延), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2021, 30(3): 034208.
[4] Single-mode antiresonant terahertz fiber based on mode coupling between core and cladding
Shuai Sun(孙帅), Wei Shi(史伟), Quan Sheng(盛泉), Shijie Fu(付士杰), Zhongbao Yan(闫忠宝), Shuai Zhang(张帅), Junxiang Zhang(张钧翔), Chaodu Shi(史朝督), Guizhong Zhang(张贵忠), and Jianquan Yao(姚建铨). Chin. Phys. B, 2021, 30(12): 124205.
[5] Temperature dependence of mode coupling effect in piezoelectric vibrator made of [001]c-poled Mn-doped 0.24PIN-0.46PMN-0.30PT ternary single crystals with high electromechanical coupling factor
Nai-Xing Huang(黄乃兴), En-Wei Sun(孙恩伟), Rui Zhang(张锐), Bin Yang(杨彬), Jian Liu(刘俭), Tian-Quan Lü(吕天全), Wen-Wu Cao(曹文武). Chin. Phys. B, 2020, 29(7): 075201.
[6] Pulse shaping of bright-dark vector soliton pair
Yan Zhou(周延), Yuefeng Li(李月锋), Xia Li(李夏), Meisong Liao(廖梅松), Jingshan Hou(侯京山), Yongzheng Fang(房永征). Chin. Phys. B, 2020, 29(5): 054202.
[7] Influence of warm eddies on sound propagation in the Gulf of Mexico
Yao Xiao(肖瑶), Zhenglin Li(李整林), Jun Li(李鋆), Jiaqi Liu(刘佳琪), Karim G Sabra. Chin. Phys. B, 2019, 28(5): 054301.
[8] Effect of thermally induced birefringence on high power picosecond azimuthal polarization Nd:YAG laser system
Hongpan Peng(彭红攀), Ce Yang(杨策), Shang Lu(卢尚), Ning Ma(马宁), Meng Chen(陈檬). Chin. Phys. B, 2019, 28(2): 024205.
[9] High birefringence, low loss, and flattened dispersion photonic crystal fiber for terahertz application
Dou-Dou Wang(王豆豆), Chang-Long Mu(穆长龙), De-Peng Kong(孔德鹏), Chen-Yu Guo(郭晨瑜). Chin. Phys. B, 2019, 28(11): 118701.
[10] Polarization-based range-gated imaging in birefringent medium:Effect of size parameter
Heng Tian(田恒), Jing-Ping Zhu(朱京平), Shu-Wen Tan(谭树文), Jing-Jing Tian(田晶晶), Yun-Yao Zhang(张云尧), Xun Hou(侯洵). Chin. Phys. B, 2018, 27(12): 124203.
[11] Design of photonic crystal fiber with elliptical air-holes to achieve simultaneous high birefringence and nonlinearity
Min Liu(刘敏), Jingyun Hou(侯静云), Xu Yang(杨虚), Bingyue Zhao(赵昺玥), Ping Shum. Chin. Phys. B, 2018, 27(1): 014206.
[12] Birefringence via Doppler broadening and prevention of information hacking
Humayun Khan, Muhammad Haneef, Bakhtawar. Chin. Phys. B, 2018, 27(1): 014201.
[13] Electro-optical properties of high birefringence liquid crystal compounds with isothiocyanate and naphthyl group
Zeng-Hui Peng(彭增辉), Qi-Dong Wang(王启东), Shao-Xin Wang(王少鑫), Li-Shuang Yao(姚丽双), Yong-Gang Liu(刘永刚), Li-Fa Hu(胡立发), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Cheng-Liang Yang(杨程亮), Li Xuan(宣丽). Chin. Phys. B, 2017, 26(9): 094210.
[14] Fiber core mode leakage induced by refractive index variation in high-power fiber laser
Ping Yan(闫平), Xuejiao Wang(王雪娇), Yusheng Huang(黄昱升), Chen Fu(付晨), Junyi Sun(孙骏逸), Qirong Xiao(肖起榕), Dan Li(李丹), Mali Gong(巩马理). Chin. Phys. B, 2017, 26(3): 034205.
[15] Modulation instabilities in randomly birefringent two-mode optical fibers
Jin-Hua Li(李金花), Hai-Dong Ren(任海东), Shi-Xin Pei(裴世鑫), Zhao-Lou Cao(曹兆楼), Feng-Lin Xian(咸冯林). Chin. Phys. B, 2016, 25(12): 124208.
No Suggested Reading articles found!