Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 100508    DOI: 10.1088/1674-1056/20/10/100508
GENERAL Prev   Next  

Enhancement effect of asymmetry on the thermal conductivity of double-stranded chain systems

Zhang Mao-Ping(张茂平)a), Zhong Wei-Rong(钟伟荣) a)†, and Ai Bao-Quan(艾保全)b)
a Department of Physics, College of Science and Engineering, Jinan University, Guangzhou 510632, China; b School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
Abstract  Using nonequilibrium molecular dynamics simulations, we study the thermal conductivity of asymmetric double chains. We couple two different single chains through interchain coupling to build three kinds of asymmetric double-stranded chain system: intrachain interaction, external potential, and mass asymmetric double chains. It is reported that asymmetry is helpful in improving the thermal conductivity of the system. We first propose double-heat flux channels to explain the influence of asymmetric structures on the thermal conductivity. The phonon spectral behaviour and finite size effect are also included.
Keywords:  thermal conductivity      double-stranded chain      asymmetric structures      inter-chain flux  
Received:  29 January 2011      Revised:  06 May 2011      Accepted manuscript online: 
PACS:  05.60.-k (Transport processes)  
  44.10.+i (Heat conduction)  
  66.10.cd (Thermal diffusion and diffusive energy transport)  
  44.05.+e (Analytical and numerical techniques)  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant No. 11004082), the Natural Science Foundation of Guangdong Province of China (Grant No. 01005249), and the Fundamental Research Funds for the Central Universities of China (Grant No. 21609305).

Cite this article: 

Zhang Mao-Ping(张茂平), Zhong Wei-Rong(钟伟荣), and Ai Bao-Quan(艾保全) Enhancement effect of asymmetry on the thermal conductivity of double-stranded chain systems 2011 Chin. Phys. B 20 100508

[1] Wang L and Li B 2007 Phys. Rev. Lett. 99 177208
[2] Hu B and Yang L 2005 Chaos 15 015119
[3] Lepri S, Livi R and Politi A 2003 Phys. Rep. 377 1
[4] Lepri S, Livi R and Politi A 1997 Phys. Rev. Lett. 78 1896
[5] Hu B, Li B and Zhao H 1998 Phys. Rev. E 57 2992
[6] Li B and Wang J 2003 Phys. Rev. Lett. 91 044301
[7] Dhar A 2001 Phys. Rev. Lett. 86 3554
[8] Basile G, Bernardin C and Olla S 2006 Phys. Rev. Lett. 96 204303
[9] Cao B Y and Hou Q W 2008 Chin. Phys. Lett. 25 1392
[10] Li H B and Li Z 2010 Chin. Phys. B 19 054401
[11] Terraneo M, Peyrard M and Casati G 2002 Phys. Rev. Lett. 88 094302
[12] Chang C W, Okawa D, Majumdar A and Zell A 2006 Science 314 1121
[13] Floria L M and Mazo J J 1996 Adv. Phys. 45 505
[14] Watanabe S, Strogatz S Z, van der Zan H S J T and Orlando T P 1996 Physica (Amsterdam) D 97 429
[15] Erwin S C, Baski A A, Whitman L J and Rudd R E 1999 Phys. Rev. Lett. 83 1818
[16] Peraaon B N 1994 Surf. Sci. Rep. 33 83
[17] Wang J and Zheng Z 2010 Phys. Rev. E 81 011114
[18] Zhang M P, Zhong W R and Ai B Q 2011 Acta Phys. Sin. 60 060511 (in Chinese)
[19] Gillan M J and Holloway R W 1985 J. Phys. C 18 5705
[20] Tsironis G P, Bishop A R, Savin A V and Zolotaryuk A V 1999 Phys. Rev. E 60 6610
[21] Savin A V and Gendelman O V 2003 Phys. Rev. E 67 041205
[22] Yang L and Grassberger P 2003 arXiv: cond-mat/0306173
[23] Zhong W R, Yang P, Ai B Q, Shao Z G and Hu B 2009 emphPhys. Rev. E 79 050103(R)
[24] Hu B, Yang L and Zhang Y 2006 Phys. Rev. Lett. 97 124302
[25] Li B, Wang L and Casati G 2004 Phys. Rev. Lett. 93 184301
[26] Zhong W R 2010 Phys. Rev. E 81 061131
[27] Press W H, Teukolsky S A, Vetterling W T and Flannery B P 1992 Numerical Recipes (Cambridge: Cambridge University Press)
[28] Nos'e S 1984 J. Chem. Phys. 81 511
[29] Hoover W G 1985 Phys. Rev. A 31 1695
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[5] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[6] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[7] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[8] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[9] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[10] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[11] Accurate determination of anisotropic thermal conductivity for ultrathin composite film
Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰). Chin. Phys. B, 2022, 31(10): 108102.
[12] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
[13] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[14] Excellent thermoelectric performance predicted in Sb2Te with natural superlattice structure
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chaoyu He(何朝宇), Jin Li(李金), Chunxiao Zhang(张春小), and Jianxin Zhong(钟建新). Chin. Phys. B, 2021, 30(12): 128401.
[15] Effect of deformation of diamond anvil and sample in diamond anvil cell on the thermal conductivity measurement
Caihong Jia(贾彩红), Dawei Jiang(蒋大伟), Min Cao(曹敏), Tingting Ji(冀婷婷), and Chunxiao Gao(高春晓). Chin. Phys. B, 2021, 30(12): 124702.
No Suggested Reading articles found!