Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 100501    DOI: 10.1088/1674-1056/20/10/100501
GENERAL Prev   Next  

Soliton dynamical properties of Bose–Einstein condensates trapped in a double square well potential

Li Jin-Hui(李锦茴)a)† and Li Zhi-Jian(李志坚)b)
a Mathematics and Science Department, Hunan First Normal University, Changsha 410205, China; b Information Science and Engineering Department, Hunan First Normal University, Changsha 410205, China
Abstract  We first present an analytical solution of the single and double solitions of Bose-Einstein condensates trapped in a double square well potential using the multiple-scale method. Then, we show by numerical calculation that a dark soliton can be transmitted through the square well potential. With increasing depth of the square well potential, the amplitude of the dark soliton becomes larger, and the soliton propagates faster. In particular, we treat the collision behaviour of the condensates trapped in either equal or different depths of the double square well potential. If we regard the double square well potential as the output source of the solitons, the collision locations (position and time) between two dark solitons can be controlled by its depth.
Keywords:  Bose-Einstein condensates      solitons      double square well potential  
Received:  28 December 2010      Revised:  21 April 2011      Accepted manuscript online: 
PACS:  05.30.Jp (Boson systems)  
  02.90.+p (Other topics in mathematical methods in physics)  
  11.10.Lm (Nonlinear or nonlocal theories and models)  
Fund: Project supported by the Science Research Foundation of the Education Bureau of Hunan Province of China (Grant No. 09C227).

Cite this article: 

Li Jin-Hui(李锦茴) and Li Zhi-Jian(李志坚) Soliton dynamical properties of Bose–Einstein condensates trapped in a double square well potential 2011 Chin. Phys. B 20 100501

[1] Burger S, Bongs K, Dettmer S, Ertmer W and Sengstock K 1999 Phys. Rev. Lett. 83 5198
[2] Denschlag J, Simsarian J E, Feder D L, Clark C W, Collins L A, Cubizolles J, Deng L, Hagley E W, Helmerson K, Reinhardt W P, Rolston S L, Schneider B I and Phillips W D 2000 Science 287 97
[3] Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y and Salomon1 C 2002 Science 296 1290
[4] Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417 150
[5] Liu W M, Wu B and Niu Q 2000 Phys. Rev. Lett. 84 2294
[6] Ji A C, Sun Q, Xie X C and Liu W M 2009 Phys. Rev. Lett. 102 023602
[7] Li Z D, Li Q Y, Li L and Liu W M 2007 Phys. Rev. E 76 026605
[8] Wang D L, Yan X H and Liu W M 2008 Phys. Rev. E 78 026606
[9] Huang G X, Velarde M G and Makarov V A 2001 Phys. Rev. A 64 013617
[10] Huang G X, Szeftel J and Zhu S H 2002 Phys. Rev. A 65 053605
[11] Zhang W X, Wang D L, He Z M, Wang F J and Ding J W 2008 Phys. Lett. A 372 4407
[12] She Y C, Wang D L, Zhang W X, He Z M and Ding J W 2010 J. Opt. Soc. Am. B 27 208
[13] Zhang X F, Yang Q, Zhang J F, Chen X Z and Liu W M 2008 Phys. Rev. A 77 023613
[14] Wang D S, Hu X H, Hu J P and Liu W M 2010 Phys. Rev. A 81 025604
[15] Wang D L, Yan X H and Wang F J 2007 Chin. Phys. Lett. 24 1817
[16] Chen Y H, Wu W, Tao H S and Liu W M 2010 Phys. Rev. A 82 043625
[17] Li Q Y, Li Z D, Yao S F, Li L and Fu G S 2010 Chin. Phys. B 19 080501
[18] Song W W, Li Q Y, Li Z D and Fu G S 2010 Chin. Phys. B 19 070503
[19] Zhang J M and Liu W M 2010 Phys. Rev. A 82 025602
[20] He Z M, Wang D L, Zhang W X, Wang F J and Ding J W 2008 Chin. Phys. B 17 3640
[21] Xi Y D, Wang D L, He Z M and Ding J W 2009 Chin. Phys. B 18 939
[22] Xi Y D, Wang D L, She Y C, Wang F J and Ding J W 2010 Acta Phys. Sin. 59 3720 (in Chinese)
[23] She Y C, Wang D L and Ding J W 2009 Acta Phys. Sin. 58 3198 (in Chinese)
[24] Li Z D, Li Q Y, He P B, Liang J Q, Liu W M and Fu G S 2010 Phys. Rev. A 81 015602
[25] Zhang W X, Wang D L and Ding J W 2008 Acta Phys. Sin. 57 6786 (in Chinese)
[26] He Z M and Wang D L 2007 Acta Phys. Sin. 56 3088 (in Chinese)
[27] Li Q Y, Li Z D, Wang S X, Song W W and Fu G S 2009 Opt. Commun. 282 1676
[28] Wang F J, Yan X H, Wang D L and Ding J W 2009 Mod. Phys. Lett. 19 2311
[29] Pethick C J and Smith H 2002 Bose-Einstein Condensation in Dilute Gases (Cambridge: Cambridge University Press)
[30] Dalfovo E, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71 463
[31] Liang Z X, Zhang Z D and Liu W M 2005 Phys. Rev. Lett. 94 050402
[32] Mahmud K W, Kutz J N and Reinhart W P 2002 Phys. Rev. A 66 063607
[33] Likharev K K 1979 Rev. Mod. Phys. 51 101
[34] Albiez M, Gati R, Fölling J, Hunsmann S, Cristiani M and Oberthaler M K 2005 Phys. Rev. Lett. 95 010402
[35] Zi'n P, Infeld E, Matuszewski M, Rowlands G and Trippenbach M 2006 Phys. Rev. A 73 022105
[36] Infeld E, Zi'n P, Gocalek J and Trippenbach M 2006 Phys. Rev. E 74 026610
[37] Matuszewski M, Malomed B A and Trippenbach M 2007 Phys. Rev. A 75 063621
[38] Wang D L, Yan X H and Tang Y 2004 J. Phys. Soc. Jpn. 73 123
[39] Wang D L and Yan X H 2011 Int. J. Mod. Phys. B 25 781
[40] Wang D L, Yang R S and Yang Y T 2007 Commun. Theor. Phys. (Beijing, China) 48 917
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Anderson localization of a spin-orbit coupled Bose-Einstein condensate in disorder potential
Huan Zhang(张欢), Sheng Liu(刘胜), and Yongsheng Zhang(张永生). Chin. Phys. B, 2022, 31(7): 070305.
[3] Gap solitons of spin-orbit-coupled Bose-Einstein condensates in $\mathcal{PT}$ periodic potential
S Wang(王双), Y H Liu(刘元慧), and T F Xu(徐天赋). Chin. Phys. B, 2022, 31(7): 070306.
[4] Vortex chains induced by anisotropic spin-orbit coupling and magnetic field in spin-2 Bose-Einstein condensates
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(6): 060305.
[5] Measuring gravitational effect of superintense laser by spin-squeezed Bose—Einstein condensates interferometer
Eng Boon Ng and C. H. Raymond Ooi. Chin. Phys. B, 2022, 31(5): 053701.
[6] Manipulating vortices in F=2 Bose-Einstein condensates through magnetic field and spin-orbit coupling
Hao Zhu(朱浩), Shou-Gen Yin(印寿根), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2022, 31(4): 040306.
[7] Post-solitons and electron vortices generated by femtosecond intense laser interacting with uniform near-critical-density plasmas
Dong-Ning Yue(岳东宁), Min Chen(陈民), Yao Zhao(赵耀), Pan-Fei Geng(耿盼飞), Xiao-Hui Yuan(远晓辉), Quan-Li Dong(董全力), Zheng-Ming Sheng(盛政明), and Jie Zhang(张杰). Chin. Phys. B, 2022, 31(4): 045205.
[8] Riemann-Hilbert approach and N double-pole solutions for a nonlinear Schrödinger-type equation
Guofei Zhang(张国飞), Jingsong He(贺劲松), and Yi Cheng(程艺). Chin. Phys. B, 2022, 31(11): 110201.
[9] Spin-orbit-coupled spin-1 Bose-Einstein condensates confined in radially periodic potential
Ji Li(李吉), Tianchen He(何天琛), Jing Bai(白晶), Bin Liu(刘斌), and Huan-Yu Wang(王寰宇). Chin. Phys. B, 2021, 30(3): 030302.
[10] Optical solitons supported by finite waveguide lattices with diffusive nonlocal nonlinearity
Changming Huang(黄长明), Hanying Deng(邓寒英), Liangwei Dong(董亮伟), Ce Shang(尚策), Bo Zhao(赵波), Qiangbo Suo(索强波), and Xiaofang Zhou(周小芳). Chin. Phys. B, 2021, 30(12): 124204.
[11] Adjustable half-skyrmion chains induced by SU(3) spin-orbit coupling in rotating Bose-Einstein condensates
Li Wang(王力), Ji Li(李吉), Xiao-Lin Zhou(周晓林), Xiang-Rong Chen(陈向荣), and Wu-Ming Liu(刘伍明). Chin. Phys. B, 2021, 30(11): 110312.
[12] Generation of domain-wall solitons in an anomalous dispersion fiber ring laser
Wen-Yan Zhang(张文艳), Kun Yang(杨坤), Li-Jie Geng(耿利杰), Nan-Nan Liu(刘楠楠), Yun-Qi Hao(郝蕴琦), Tian-Hao Xian(贤天浩), and Li Zhan(詹黎). Chin. Phys. B, 2021, 30(11): 114212.
[13] Spinor F=1 Bose-Einstein condensates loaded in two types of radially-periodic potentials with spin-orbit coupling
Ji-Guo Wang(王继国), Yue-Qing Li(李月晴), Han-Zhao Tang(唐翰昭), and Ya-Fei Song(宋亚飞). Chin. Phys. B, 2021, 30(10): 106701.
[14] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
[15] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
No Suggested Reading articles found!