Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(10): 100302    DOI: 10.1088/1674-1056/20/10/100302
GENERAL Prev   Next  

Quantum and classical correlations for a two-qubit X structure density matrix

Ding Bang-Fu(丁邦福), Wang Xiao-Yun(王小云), and Zhao He-Ping(赵鹤平)
College of Physical Science and Information Engineering, Jishou University, Jishou 416000, China
Abstract  We derive explicit expressions for quantum discord and classical correlation for an X structure density matrix. Based on the characteristics of the expressions, the quantum discord and the classical correlation are easily obtained and compared under different initial conditions using a novel analytical method. We explain the relationships among quantum discord, classical correlation, and entanglement, and further find that the quantum discord is not always larger than the entanglement measured by concurrence in a general two-qubit X state. The new method, which is different from previous approaches, has certain guiding significance for analysing quantum discord and classical correlation of a two-qubit X state, such as a mixed state.
Keywords:  quantum and classical mutual information      X structure density matrix      quantum discord      classical correlation      entanglement  
Received:  08 May 2011      Revised:  13 June 2011      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.67.-a (Quantum information)  
Fund: Project supported by the Natural Science Foundation of Hunan Province of China (Grant No. 09JJ6011) and the Natural Science Foundation of Education Department of Hunan Province, China (Grant Nos. 08A055 and 07C528).

Cite this article: 

Ding Bang-Fu(丁邦福), Wang Xiao-Yun(王小云), and Zhao He-Ping(赵鹤平) Quantum and classical correlations for a two-qubit X structure density matrix 2011 Chin. Phys. B 20 100302

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Schrodinger E 1935 Naturewissenschaften 23 807
[3] Diosi 2003 Lect. Notes Phys. 622 157
[4] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[5] Cai X H and Kuang L M 2002 Chin. Phys. 11 876
[6] Ficek Z and Tanas R 2006 Phys. Rev. A 74 024304
[7] Shan C J, Chen T, Liu J B, Cheng W W, Liu T K, Huang Y X and Li H 2010 Chin. Phys. B 19 060303
[8] Cirone M A, Compagno G, Palma G M, Passante R and Persico F 2007 Europhys. Lett. 78 30003
[9] Almeida M P, de Melo F, Hor-Meyll M, Salles A, Wallborn S P, Souto Ribeiro H P and Davidovich L 2007 Science 316 579
[10] Sun Z, Wang X and Sun C P 2007 Phys. Rev. A 75 062312
[11] Guo J L, Xia Y and Song H S 2010 Chin. Phys. B 19 010310
[12] Wootters W K 1997 Phys. Rev. Lett. 80 2245
[13] Liu Q and Tan Y G 2011 Chin. Phys. B 20 040303
[14] Niset J and Cerf N J 2006 Phys. Rev. A 74 052103
[15] Datta A and Vidal G 2007 Phys. Rev. A 75 042310
[16] Datta A, Shaji A and Caves C M 2008 Phys. Rev. Lett. 100 050502
[17] Lanyou B P, Barbieri M, Almeida M P and White A G 2008 Phys. Rev. Lett. 101 200501
[18] Ollivier H and Zurek W H 2001 Phys. Rev. Lett. 88 017901
[19] Vedral V 2003 Phys. Rev. Lett. 90 050401
[20] Maziero J, Celeri L C, Serra R M and Vedral V 2009 Phys. Rev. A 80 044102
[21] Li N and Luo S L 2007 Phys. Rev. A 76 032327
[22] Luo S L 2008 Phys. Rev. A 77 042303
[23] Sarandy M S 2009 Phys. Rev. A 80 022108
[24] Chen Q Y, Fang M F, Xiao X and Zhou X F 2011 Chin. Phys. B 20 050302
[25] Kaszlikowski D, Sen A, Sen U, Vedral and Winter A 2008 Phys. Rev. Lett. 101 070502
[26] Fanchini F F, Werlang T, Brasil C A, Arruda L G E and Caldeira A O 2010 Phys. Rev. A 81 052107
[27] Ali M, Ran A P R and Alber G 2010 Phys. Rev. A 81 042105
[28] Werlang T, Souza S, Fanchini F F and Villas Boas C J 2009 Phys Rev. A 80, 024103
[29] Werner R F 1989 Phys. Rev. A 40 4277
[30] Yu T and Eberly J H 2007 Quantum Information and Computation 7 459
[1] Unified entropy entanglement with tighter constraints on multipartite systems
Qi Sun(孙琪), Tao Li(李陶), Zhi-Xiang Jin(靳志祥), and Deng-Feng Liang(梁登峰). Chin. Phys. B, 2023, 32(3): 030304.
[2] Entanglement and thermalization in the extended Bose-Hubbard model after a quantum quench: A correlation analysis
Xiao-Qiang Su(苏晓强), Zong-Ju Xu(许宗菊), and You-Quan Zhao(赵有权). Chin. Phys. B, 2023, 32(2): 020506.
[3] Transformation relation between coherence and entanglement for two-qubit states
Qing-Yun Zhou(周晴云), Xiao-Gang Fan(范小刚), Fa Zhao(赵发), Dong Wang(王栋), and Liu Ye(叶柳). Chin. Phys. B, 2023, 32(1): 010304.
[4] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[5] Characterizing entanglement in non-Hermitian chaotic systems via out-of-time ordered correlators
Kai-Qian Huang(黄恺芊), Wei-Lin Li(李蔚琳), Wen-Lei Zhao(赵文垒), and Zhi Li(李志). Chin. Phys. B, 2022, 31(9): 090301.
[6] Purification in entanglement distribution with deep quantum neural network
Jin Xu(徐瑾), Xiaoguang Chen(陈晓光), Rong Zhang(张蓉), and Hanwei Xiao(肖晗微). Chin. Phys. B, 2022, 31(8): 080304.
[7] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[8] Robustness of two-qubit and three-qubit states in correlated quantum channels
Zhan-Yun Wang(王展云), Feng-Lin Wu(吴风霖), Zhen-Yu Peng(彭振宇), and Si-Yuan Liu(刘思远). Chin. Phys. B, 2022, 31(7): 070302.
[9] Self-error-rejecting multipartite entanglement purification for electron systems assisted by quantum-dot spins in optical microcavities
Yong-Ting Liu(刘永婷), Yi-Ming Wu(吴一鸣), and Fang-Fang Du(杜芳芳). Chin. Phys. B, 2022, 31(5): 050303.
[10] Effects of colored noise on the dynamics of quantum entanglement of a one-parameter qubit—qutrit system
Odette Melachio Tiokang, Fridolin Nya Tchangnwa, Jaures Diffo Tchinda,Arthur Tsamouo Tsokeng, and Martin Tchoffo. Chin. Phys. B, 2022, 31(5): 050306.
[11] Protecting geometric quantum discord via partially collapsing measurements of two qubits in multiple bosonic reservoirs
Xue-Yun Bai(白雪云) and Su-Ying Zhang(张素英). Chin. Phys. B, 2022, 31(4): 040308.
[12] Entanglement spectrum of non-Abelian anyons
Ying-Hai Wu(吴英海). Chin. Phys. B, 2022, 31(3): 037302.
[13] Probabilistic resumable quantum teleportation in high dimensions
Xiang Chen(陈想), Jin-Hua Zhang(张晋华), and Fu-Lin Zhang(张福林). Chin. Phys. B, 2022, 31(3): 030302.
[14] Tetrapartite entanglement measures of generalized GHZ state in the noninertial frames
Qian Dong(董茜), R. Santana Carrillo, Guo-Hua Sun(孙国华), and Shi-Hai Dong(董世海). Chin. Phys. B, 2022, 31(3): 030303.
[15] Channel parameters-independent multi-hop nondestructive teleportation
Hua-Yang Li(李华阳), Yu-Zhen Wei(魏玉震), Yi Ding(丁祎), and Min Jiang(姜敏). Chin. Phys. B, 2022, 31(2): 020302.
No Suggested Reading articles found!