Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 018201    DOI: 10.1088/1674-1056/20/1/018201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

First-principles studies of Mn-doped LiCoPO4

Lin Zhi-Ping(林志萍)a)b), Zhao Yan-Ming(赵彦明) a)†, and Zhao Yu-Jun(赵宇军)a)
a Department of Physics, South China University of Technology, Guangzhou 510640, China; b School of Physics, Guangdong University of Technology, Guangzhou 510090, China
Abstract  This paper investigates Mn-doped LiCoPO4 material using first-principles calculations. Results indicate that the volume change of LiMnxCo1-xPO4 to MnxCo1-xPO4 is smaller than that of undoped LiCoPO4, which is responsible for the excellent tolerance of repeated cycling in lithium ion batteries. Combining first-principles calculations with basic thermodynamics, we calculate the average intercalation voltage of Mn-doped LiCoPO4. It is shown that the redox couple Mn3+/Mn2+ can be observed with increasing Mn content. Therefore, the Mn ion displays some electrochemical activity during discharge/charge of LiMnxCo1-xPO4 due to the coexistence of Co and Mn.
Keywords:  first-principles calculation      electrochemical activity doping  
Received:  20 November 2009      Revised:  07 June 2010      Accepted manuscript online: 
PACS:  82.47.Aa (Lithium-ion batteries)  
  71.15.Nc (Total energy and cohesive energy calculations)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.Be (Transition metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 50772039) and the Science and Technology Bureau of Guangdong Province, China (Grant No. 07118058).

Cite this article: 

Lin Zhi-Ping(林志萍), Zhao Yan-Ming(赵彦明), and Zhao Yu-Jun(赵宇军) First-principles studies of Mn-doped LiCoPO4 2011 Chin. Phys. B 20 018201

[1] Padhi A K, Nanjundaswamy K S and Goodenough J B 1997 J. Electrochem. Soc. 144 1188
[2] Amine K, Yasuda H and Yamachi M 2000 Elecrochem. Solid-State Lett. 3 178
[3] Carrasco J, Lopez N and Illas F 2004 Phys. Rev. Lett. 93 225502
[4] Yamada A and Chung S C 2001 J. Electrochem. Soc. 148 A960
[5] Ouyang C Y, Shi S Q, Wang Z X, Huang X J and Chen L Q 2004 Phys. Rev. B 69 104303
[6] Ouyang C Y, Shi S Q, Wang Z X, Li H, Huang X J and Chen L Q 2004 J. Phys.: Condens. Matter 16 2265
[7] Ouyang C Y, Shi S Q, Fang Q and Lei M S 2008 J. Power Sources 175 891
[8] Shi S Q, Ouyang C Y, Wang D S, Chen L Q and Huang X J 2003 Solid State Communications 126 513
[9] Shi S Q, Ouyang C Y, Lei M S and Tang W H 2007 J. Power Sources 171 908
[10] Wang D Y, Li H, Shi S Q, Huang X J and Chen L Q 2005 Electrochimica Acta 50 2955
[11] Ouyang X F, Shi S Q, Ouyang C Y, Jiang D Y, Liu D S, Ye Z Q and Lei M S 2007 Chin. Phys. 16 3042
[12] Satya Kishore M V V M and Varadaraju U V 2005 Mater. Res. Bull. 40 1705
[13] Kresse G and Joubert J 1999 Phys. Rev. B 59 1758
[14] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[15] Kresse G and Hafner J 1994 Phys. Rev. B 49 14251
[16] Kresse G and Hafner J 1994 J. Phys.: Condens. Mater. Sci. 6 8245
[17] Kresse G and Furthm"uller J 1996 Comput. Mater. Sci. 6 15
[18] Kresse G and Furthm"uller J 1996 Phys. Rev. B 54 11169
[19] Shi S Q, Wang D S, Meng S, Chen L Q and Huang X J 2003 Phys. Rev. B 67 115130
[20] Ceder G, Aydinol M K and Kohan A F 1997 Comput. Mater. Sci. 8 161
[21] Aydinol M K, Kohan A F, Ceder G, Cho K and Joannopoulos J 1997 Phys. Rev. B 56 1354
[22] Shi S Q, Ouyang C Y, Xiong Z H, Liu L J, Wang Z X, Li H, Wang D S, Chen L Q and Huang X J 2005 Phys. Rev. B 71 144404
[23] Yamada A, Takei Y, Koizumi H, Sonoyama N and Kanno R 2005 Appl. Phys. Lett. 87 252503
[24] Deniard P, Dulac A M, Rocquefelte X, Grigorova V, Lebacq O, Pastural A and Jobic S 2004 J. Phys. Chem. Solids 65 229
[25] Nie Z X, Ouyang C Y, Chen J Z, Zhong Z Y, Du Y L, Liu D S, Shi S Q and Lei M S 2010 Solid State Communications 150 40
[26] Bramnik N N, Bramnik K G, Buhrmester T, Bachtz C, Bhrenberg E and Fuess H 2004 J. Solid State Electrochem. 8 558
[27] Wolfenstine J, Lee U, Poese B and Allen J L 2005 J. Power Sources 144 226
[28] Ni J F, Zhou H H, Chen J T and Zhang X X 2005 Mater. Lett. 59 2361
[29] Molenda J, Ojczyk W, 'Swierezek K, Zajac W, Krok F, Dygas J and Liu R S 2006 Solid State Ionics 177 2617
[30] Le Bacq O and Pasturel A 2004 Phys. Rev. B 69 245107
[31] Yamada A, Kudo Y and Liu K Y 2001 J. Electrochem. Soc. 148 A1153 endfootnotesize
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[3] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[4] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[5] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[6] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[7] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[8] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[9] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[10] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
[11] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[12] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[13] First-principles study of stability of point defects and their effects on electronic properties of GaAs/AlGaAs superlattice
Shan Feng(冯山), Ming Jiang(姜明), Qi-Hang Qiu(邱启航), Xiang-Hua Peng(彭祥花), Hai-Yan Xiao(肖海燕), Zi-Jiang Liu(刘子江), Xiao-Tao Zu(祖小涛), and Liang Qiao(乔梁). Chin. Phys. B, 2022, 31(3): 036104.
[14] A new direct band gap silicon allotrope o-Si32
Xin-Chao Yang(杨鑫超), Qun Wei(魏群), Mei-Guang Zhang(张美光), Ming-Wei Hu(胡明玮), Lin-Qian Li(李林茜), and Xuan-Min Zhu(朱轩民). Chin. Phys. B, 2022, 31(2): 026104.
[15] First-principles study of two new boron nitride structures: C12-BN and O16-BN
Hao Wang(王皓), Yaru Yin(殷亚茹), Xiong Yang(杨雄), Yanrui Guo(郭艳蕊), Ying Zhang(张颖), Huiyu Yan(严慧羽), Ying Wang(王莹), and Ping Huai(怀平). Chin. Phys. B, 2022, 31(2): 026102.
No Suggested Reading articles found!