Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 015204    DOI: 10.1088/1674-1056/20/1/015204
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Control of plasmonic wave propagating in nanocavity with tooth-shaped configuration

Li Xu-Feng(李旭峰), Pan Shi(潘石), Guo Ying-Nan (郭英楠), and Wang Qiao(王乔)
School of Physics and Optoelectronic Technology, Dalian University of Technology, Dalian 116024, China
Abstract  Characteristics of plasmonic wave propagating in nanocavity formed by two silver films are studied numerically. The groove etched inside wall of the top film makes it possible to control the propagation when light goes through the top film along a nanoslit into the cavity. It is found that the transmission wave through the channel of groove etched side can be filtered linearly with the groove of a certain depth; while the other side is still open for this wave and its intensity can be enhanced periodically with the variable groove position in both films, which are explained well based on the interference of plasmonic waves in the system.
Keywords:  plasmonic wave      optical devices      FDTD  
Received:  24 April 2010      Revised:  06 July 2010      Accepted manuscript online: 
PACS:  52.35.-g (Waves, oscillations, and instabilities in plasmas and intense beams)  
  42.79.-e (Optical elements, devices, and systems)  
  02.60.-x (Numerical approximation and analysis)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10974025).

Cite this article: 

Li Xu-Feng(李旭峰), Pan Shi(潘石), Guo Ying-Nan (郭英楠), and Wang Qiao(王乔) Control of plasmonic wave propagating in nanocavity with tooth-shaped configuration 2011 Chin. Phys. B 20 015204

[1] Thio T, Lezec H J, Ebbesen T W, Pellerin K M, Lewen G D, Nahata A and Linke R A 2002 Nanotechnology 13 429
[2] Liu B C 2010 Chin. Phys. B 19 9
[3] Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 39 667
[4] Cui N, Deng L, Gong S Q, Niu Y P and Wang L C 2010 Chin. Phys. B 19 1
[5] Yang R, Abushagur M A and Lu Z 2008 Opt. Express bf16 20142
[6] Lin X S and Huang X G 2008 Opt. Lett. 33 2874
[7] Lin X S and Huang X G 2009 J. Opt. Soc. B 26 1263
[8] Gao H, Shi H, Wang C, Du C, Luo X, Deng Q, Lv Y, Lin X and Yao H 2005 Opt. Express bf13 10795
[9] Zhao H, Huang X G and Huang J 2008 Phys. E 40 3025
[10] Veronis G and Fan S 2005 Appl. Phys. Lett. bf87 131102
[11] Gan Q Q, Guo B S, Song G F, Chen L H, Fu Z, Ding Y J and Bartoli F J 2007 Appl. Phys. Lett. bf90 161130
[12] Gan Q Q, Fu Z, Ding Y J and Bartoli F J 2007 Opt. Express bf15 18050
[13] Fu Z, Gan Q Q, Gao K L, Pan Z Q and Bartoli F J 2008 J. Light Wave Technol. bf26 3699
[14] Caglayan H and Ozbay E 2008 Opt. Express bf16 19091
[15] Choi S B, Park D J, Jeong Y K, Yun Y C, Jeong M S, Byeon C C, Kang J H, Park Q-H and Kim D S 2009 Appl. Phys. Lett. bf94 063115
[16] Verslegers L, Catrysse P B, Yu Z F and Fan S H 2009 Appl. Phys. Lett. bf95 071112
[17] Zheng G G and Li X Y 2009 J. Opt. A: Pure Appl. Opt. bf11 075002
[18] Lerosey G, Pile D F P, Matheu P, Bartal G and Zhang X 2009 Nano Lett. 9 327
[19] Wang Y K, Zhang X R, Tang H J, Yang K, Wang Y X, Song Y L, Wei T H and Wang C H 2009 Opt. Express bf17 20457
[20] Cetin A E, Guven K and M"ustecaphoglu "O E 2010 Opt. Lett. 35 1980
[21] Taflove A Computational Electrodynamics: the Finite-Difference Time-Domain Method, slac, stanford.edu
[22] Cui Y X and He S L 2009 Opt. Lett. bf34 16 endfootnotesize
[1] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[2] Quantum steerability of two qubits mediated by one-dimensional plasmonic waveguides
Ye-Qi Zhang(张业奇), Xiao-Ting Ding(丁潇婷), Jiao Sun(孙娇), and Tian-Hu Wang(王天虎). Chin. Phys. B, 2022, 31(12): 120305.
[3] Ultra-wideband surface plasmonic bandpass filter with extremely wide upper-band rejection
Xue-Wei Zhang(张雪伟), Shao-Bin Liu(刘少斌), Qi-Ming Yu(余奇明), Ling-Ling Wang(王玲玲), Kun Liao(廖昆), and Jian Lou(娄健). Chin. Phys. B, 2022, 31(11): 114101.
[4] Coupling analysis of transmission lines excited by space electromagnetic fields based on time domain hybrid method using parallel technique
Zhi-Hong Ye(叶志红), Xiao-Lin Wu(吴小林), Yao-Yao Li(李尧尧). Chin. Phys. B, 2020, 29(9): 090701.
[5] An ultrafast and low-power slow light tuning mechanism for compact aperture-coupled disk resonators
Bo-Yun Wang(王波云), Yue-Hong Zhu(朱月红), Jing Zhang(张静), Qing-Dong Zeng(曾庆栋), Jun Du(杜君), Tao Wang(王涛), Hua-Qing Yu(余华清). Chin. Phys. B, 2020, 29(8): 084211.
[6] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[7] Tunability of Fano resonance in cylindrical core-shell nanorods
Ben-Li Wang(王本立). Chin. Phys. B, 2020, 29(4): 045202.
[8] Oxide-aperture-dependent output characteristics of circularly symmetric VCSEL structure
Wen-Yuan Liao(廖文渊), Jian Li(李健), Chuan-Chuan Li(李川川), Xiao-Feng Guo(郭小峰), Wen-Tao Guo(郭文涛), Wei-Hua Liu(刘维华), Yang-Jie Zhang(张杨杰), Xin Wei(韦欣), Man-Qing Tan(谭满清). Chin. Phys. B, 2020, 29(2): 024201.
[9] Surface plasmon polaritons generated magneto-optical Kerr reversal in nanograting
Le-Yi Chen(陈乐易), Zhen-Xing Zong(宗振兴), Jin-Long Gao(高锦龙), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2019, 28(8): 083302.
[10] New hybrid FDTD algorithm for electromagnetic problem analysis
Xin-Bo He(何欣波), Bing Wei(魏兵), Kai-Hang Fan(范凯航), Yi-Wen Li(李益文), Xiao-Long Wei(魏小龙). Chin. Phys. B, 2019, 28(7): 074102.
[11] Transmission properties of microwave in rectangular waveguide through argon plasma
Xiaoyu Han(韩晓宇), Dawei Li(李大伟), Meie Chen(陈美娥), Zhan Zhang(张展), Zheng Li(李铮), Yujian Li(李雨键), Junhong Wang(王均宏). Chin. Phys. B, 2019, 28(3): 035204.
[12] Light trapping and optical absorption enhancement in vertical semiconductor Si/SiO2 nanowire arrays
Ying Wang(王莹), Xin-Hua Li(李新化). Chin. Phys. B, 2018, 27(2): 026102.
[13] Tunable coupling of a hybrid plasmonic waveguide consisting of two identical dielectric cylinders and a silver film
Benli Wang(王本立), Han Liang(梁涵), Jiafang Li(李家方). Chin. Phys. B, 2017, 26(11): 114103.
[14] FDTD simulation study of size/gap and substrate-dependent SERS activity study of Au@SiO2 nanoparticles
Jing-Liang Yang(杨晶亮), Ruo-Ping Li(李若平), Jun-He Han(韩俊鹤), Ming-Ju Huang(黄明举). Chin. Phys. B, 2016, 25(8): 083301.
[15] Fano resonance and magneto-optical Kerr rotaion in periodic Co/Ni complex plasmonic nanostructure
Le-Yi Chen(陈乐易), Zhi-Xiong Tang(唐志雄), Jin-Long Gao(高锦龙), Dao-Yong Li(李道勇), Cheng-Xin Lei(类成新), Zhen-Zhi Cheng(程振之), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2016, 25(11): 113301.
No Suggested Reading articles found!