Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 013102    DOI: 10.1088/1674-1056/20/1/013102
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Comparative analysis of energy-level splitting of Pr3+ doped in LiYF4 and LiBiF4 crystals: a complete energy matrix calculation

Duan Mei-Ling(段美玲), Kuang Xiao-Yu(邝小渝), Zhang Cai-Xia(张彩霞), and Chai Rui-Peng(柴瑞鹏)
Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China
Abstract  Based on the combination of Racah's group-theoretical consideration with Slater's wavefunction, a 91 × 91 complete energy matrix is established in tetragonal ligand field D2d for Pr3+ ion. Thus, the Stark energy-levels of Pr3+ ions doped separately in LiYF4 and LiBiF4 crystals are calculated, and our calculations imply that the complete energy matrix method can be used as an effective tool to calculate the energy-levels of the systems doped by rare earth ions. Besides, the influence of Pr3+ on energy-level splitting is investigated, and the similarities and the differences between the two doped crystals are demonstrated in detail by comparing their several pairs of curves and crystal field strength quantities. We see that the energy splitting patterns are similar and the crystal field interaction of LiYF4:Pr3+ is stronger than that of LiBiF4:Pr3+.
Keywords:  energy levels splitting      rare earth ions      complete energy matrix  
Received:  19 January 2010      Revised:  08 February 2010      Accepted manuscript online: 
PACS:  31.15.xp (Perturbation theory)  
  36.20.Kd (Electronic structure and spectra)  
  78.20.Bh (Theory, models, and numerical simulation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10774103 and 10974138).

Cite this article: 

Duan Mei-Ling(段美玲), Kuang Xiao-Yu(邝小渝), Zhang Cai-Xia(张彩霞), and Chai Rui-Peng(柴瑞鹏) Comparative analysis of energy-level splitting of Pr3+ doped in LiYF4 and LiBiF4 crystals: a complete energy matrix calculation 2011 Chin. Phys. B 20 013102

[1] Liu F, Zhang J H, L"u S Z and Wang X J 2006 Acta Phys. Sin. 55 6020 (in Chinese)
[2] Li P L, Wang Z J, Wang Y, Yang Z P, Guo Q L, Li X, Yang Y M and Fu G S 2009 Acta Phys. Sin. 58 5831 (in Chinese)
[3] Ma C G, Jiang S, Duan C K, Yin M and Xia S D 2009 Chin. Phys. B 18 1961
[4] Yang H G, Dai Z W and Zu N N 2007 Chin. Phys. 16 1650
[5] Wells J P R, Sugiyama A, Han T P J and Gallagher H G 2000 J. Lumin. 87--89 1029
[6] Rogin P, Huber G and Hulliger J 1999 J. Cryst. Growth 198/199 564
[7] Dong H N, Zheng W C, Wu S Y and Tang S 2004 Spectrochim. Acta A 60 489
[8] Combes C M, Dorenbos P, van Eijk C W E, Pedrini C, Den Hartog H W, Gesland J Y and Rodnyi P A 1997 J. Lumin. 71 65
[9] Yin J G, Zhang Q R, Liu T Y, Guo X F, Song M, Wang X and Zhang H Y 2009 Physica B 404 1053
[10] Rogin P and Hulliger J 1997 J. Cryst. Growth 179 551
[11] Khiari S, Velazquez M, Moncorg'e R, Doualan J L, Camy P, Ferrier A and Diaf M 2008 J. Alloys Compd. 451 128
[12] Yin J G, Zhang Q R, Liu T Y, Guo X F, Song M, Wang X and Zhang H Y 2009 Nuclear Instruments and Methods in Physics Research B 267 74
[13] Malkin B Z, Vanyunin M V, Graf M J, Lago J, Borsa F, Lascialfari A, Tkachuk A M and Barbara B 2008 Eur. Phys. J. B 66 155
[14] Braud A, Girard S, Doualan J L, Thuau M and Moncorg'e R 2000-II Phys. Rev. B 61 5280
[15] Wells J P R, Yamaga M, Han T P J, Gallagher H G and Honda M 1999-II Phys. Rev. B 60 3849
[16] Doneg'a C de M, Meijerink A and Blasee G 1995 J. Phys. Chem. Solids 56 673
[17] Tsuboi T, Murayama H and Shimamura K 2006 J. Alloys Compd. 408--412 776
[18] Tigreat P Y, Doualan J L, Budasca C and Moncorge R 2001 J. Lumin 94--95 23
[19] Louis M, Hubert S, Simoni E and Gesland J Y 1996 Opt. Mat. 6 121
[20] K"uck S and Sok'Olska I 2000 Chem. Phys. Lett. 325 257
[21] Esterowitz L, Bartoli F J, Allen R E, Wortman D E, Morrison C A and Leavitt R P 1979 Phys. Rev. B 19 6442
[22] Schultheiss E, Scharmann A and Schwabe D 1987 Phys. Stat. Sol. B 140 173
[23] Burdick G W and Richardson F S 1998 Chem. Phys. 228 81
[24] Ogasawara K, Watanabe S, Toyoshima H, Ishii T, Brik M G, Ikeno H and Tanaka I 2005 J. Solid State Chem. 178 412
[25] Racah G 1942 Phys. Rev. 61 186
[26] Racah G 1942 Phys. Rev. 62 438
[27] Racah G 1943 Phys. Rev. 63 367
[28] Racah G 1949 Phys. Rev. 76 1352
[29] Slater J C 1960 Quantum Theory of Atomic Structure, Vol. 2 (USA: Mcgraw-Hill Book Company, Inc.)
[30] Newman D J and Betty Ng 2000 Crystal Field Handbook (UK: Cambridge University Press)
[31] Budd B R 1963 Operator Techniques in Atomic Spectroscopy (New York: Mcgraw-Hill Book Company, Inc.)
[32] Rajnak K and Wybourne B G 1963 Phys. Rev. 132 280 endfootnotesize
[1] Theoretical investigations of the local distortion and electron paramagnetic resonance parameter for CdCl2:V2+ and CsMgX3:V2+ (X=Cl, Br) systems
Li Cheng-Gang(李成刚), Kuang Xiao-Yu(邝小渝), Duan Mei-Ling(段美玲), Zhang Cai-Xia(张彩霞), and Chai Rui-Peng(柴瑞鹏). Chin. Phys. B, 2010, 19(6): 067103.
[2] Investigations of the electron paramagnetic resonance parameters and the tetragonal local structure for (VCl6)4- coordination complex in MCl:V2+ (M=Na, K, Rb) systems
Qi Lin(祁林), Kuang Xiao-Yu(邝小渝), Chai Rui-Peng(柴瑞鹏), Duan Mei-Ling(段美玲), and Zhang Cai-Xia(张彩霞). Chin. Phys. B, 2009, 18(4): 1586-1593.
No Suggested Reading articles found!