Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 010310    DOI: 10.1088/1674-1056/20/1/010310
GENERAL Prev   Next  

The spin evolution of spin-3 52Cr Bose–Einstein condensate

Situ Shu-Ping(司徒树平) and He Yan-Zhang(贺彦章)
State Key Laboratory of Optoelectronic Materials and Technologies, and School of Physics and Engineering, Sun Yat-Sen University, Guangzhou 510275, China
Abstract  This paper studies theoretically the spin evolution of a Bose–Einstein condensate starting from a mixture of two or three groups of 52Cr (spin-3) atoms in an optical trap. The initial state is so chosen that the condensate has total magnetization zero so that the system does not distinguish up and down. It is assumed that the system is very dilute (particle number is very small), the temperature is very low, and the frequency of the harmonic trap is large enough. In these situations, the deviation caused by the neglect of the dipole–dipole interaction and by using the single-mode approximation is reduced. A theoretical calculation beyond the mean field theory is performed and the numerical results are helpful for the evaluation of the unknown strength g0.
Keywords:  Bose–Einstein condensate      spin evolution      short-ranged interaction strength  
Received:  16 May 2010      Revised:  27 June 2010      Accepted manuscript online: 
PACS:  03.75.Mn (Multicomponent condensates; spinor condensates)  
  03.75.Kk (Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow)  
  03.75.Nt (Other Bose-Einstein condensation phenomena)  
  05.30.Jp (Boson systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10874249 and 11075223).

Cite this article: 

Situ Shu-Ping(司徒树平) and He Yan-Zhang(贺彦章) The spin evolution of spin-3 52Cr Bose–Einstein condensate 2011 Chin. Phys. B 20 010310

[1] Ho T L 1998 Phys. Rev. Lett. 81 742
[2] Ohmi T and Machida K 1998 J. Phys. Soc. Jpn. 67 1822
[3] Stamper-Kurn D M, Andrews M R, Chikkatur A P, Inouye S, Miesner H J, Stenger J and Ketterle W 1998 Phys. Rev. Lett. 80 2027
[4] Stenger J, Inouye S, Stamper-Kurn D M, Miesner H J, Chikkatur A P and Ketterle W 1998 Nature (London) 396 345
[5] Law C K, Pu H and Bigelow N P 1998 Phys. Rev. Lett. 81 5257
[6] G"orlitz A, Gustavson T L, Leanhardt A E, L"ow R, Chikkatur A P, Gupta S, Inouye S, Pritchard D E and Ketterle W 2003 Phys. Rev. Lett. 90 090401
[7] Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen De A and Sen U 2007 Adv. Phys. 56 243
[8] Han J R, Liu X F and Wang Y J 2009 Chin. Phys. B 18 5301
[9] Griesmaier A, Werner J, Hensler S, Stuhler J and Pfau T 2005 Phys. Rev. Lett. 94 160401
[10] Diener R B and Ho T L 2006 Phys. Rev. Lett. 96 190405
[11] Stuhler J, Griesmaier A, Koch T, Fattori M, Pfau T, Giovanazzi S, Pedri P and Santos L, 2005 Phys. Rev. Lett. 95 150406
[12] Schmaljohann H, Erhard M, Kronj"ager J, Sengstock K and Bongs K 2004 Appl. Phys. B: Lasers Opt. 79 1001
[13] Chang M S, Hamley C D, Barrett M D, Sauer J A, Fortier K M, Zhang W, You L and Chapman M S 2004 Phys. Rev. Lett. 92 140403
[14] Chang M S, Qin Q, Zhang W, You L and Chapman M S 2005 Nature Physics (London) 1 111
[15] Pu H, Law C K, Raghavan S, Eberly J H and Bigelow N P 1999 Rhys. Rev. A 60 1463
[16] Diener R B and Ho T L 2006 arXiv:cond-mat/0608732v1 [cond-mat.other]
[17] Luo M, Bao C G and Li Z B 2008 Phys. Rev. A 77 043625
[18] Chen Z F, Bao C G and Li Z B 2008 arXiv:0802.0822v1 [cond-mat.other]
[19] Yi S, M"ustecapliovglu "O E, Sun C P and You L 2002 Phys. Rev. A 66 011601(R)
[20] Li Z B, Chen Z F, He Y Z and Bao C G 2010 Phys. Rev. A 82 032708
[21] O'Dell D H J, Giovanazzi S and Eberlein C 2004 Phys. Rev. Lett. 92 250401
[22] Bao C G 2004 Acta Sci. Nat. Univ. Sunyatseni 46 70
[23] Bao C G 2009 Few-Body Syst. 46 87
[24] Werner J, Griesmaier A, Hensler S, Stuhler J, Pfau T, Simoni A and Tiesinga E 2005 Phys. Rev. Lett. 94 183201
[25] Li Z B, Bao C G and Katriel J 2008 Phys. Rev. A bf 77 023614 endfootnotesize
[1] Three-dimensional Bose–Einstein condensate vortex soliton sunder optical lattice and harmonic confinements
Wang Ying (王莹), Zong Feng-De (宗丰德), Li Feng-Bo (李峰波). Chin. Phys. B, 2013, 22(3): 030315.
[2] Transport dynamics of an interacting binary Bose–Einstein condensate in an incommensurate optical lattice
Cui Guo-Dong (崔国栋), Sun Jian-Fang (孙剑芳), Jiang Bo-Nan (姜伯楠), Qian Jun (钱军), Wang Yu-Zhu (王育竹). Chin. Phys. B, 2013, 22(10): 100501.
[3] Exact analytical solutions of three-dimensional Gross–Pitaevskii equation with time–space modulation
Hu Xiao(胡晓) and Li Biao(李彪). Chin. Phys. B, 2011, 20(5): 050315.
[4] Stability properties of vector solitons in two-component Bose–Einstein condensates with tunable interactions
Zhang Xiao-Fei(张晓斐), Zhang Pei(张培), He Wan-Quan(和万全), and Liu Xun-Xu(刘循序) . Chin. Phys. B, 2011, 20(2): 020307.
[5] The dynamics of nonstationary solutions in one-dimensional two-component Bose–Einstein condensates
Lü Bin-Bin(吕彬彬), Hao Xue(郝雪), and Tian Qiang(田强). Chin. Phys. B, 2011, 20(2): 020308.
[6] Effect of a localized impurity on soliton dynamics in the Bose–Einstein condensates
Yang Ru-Shu(杨如曙),Yao Chun-Mei(姚春梅),and Wu Zong-Fu(伍宗富) . Chin. Phys. B, 2011, 20(2): 020502.
[7] Dark soliton in one-dimensional Bose–Einstein condensate under a periodic perturbation of trap
Liu Chao-Fei(刘超飞),Hu Ke(胡柯),Hu Tao(胡涛),and Tang Yi(唐翌) . Chin. Phys. B, 2011, 20(1): 010309.
[8] Formation of combined solitons in two-component Bose–Einstein condensates
Li Qiu-Yan(李秋艳), Li Zai-Dong(李再东), Yao Shu-Fang(姚淑芳), Li Lu(李禄), and Fu Guang-Sheng(傅广生). Chin. Phys. B, 2010, 19(8): 080501.
[9] Josephson junction of two-species Bose–Einstein condensates in a high-finesse optical cavity
Wang Bin(王彬), Tan Lei(谭磊), Lü Chun-Hai(吕纯海), and Tan Wen-Ting(谭文婷). Chin. Phys. B, 2010, 19(11): 117402.
[10] Chaos in a Bose–Einstein condensate
Wang Zhi-Xia(王志霞), Ni Zheng-Guo(倪政国), Cong Fu-Zhong(从福仲), Liu Xue-Shen(刘学深), and Chen Lei(陈蕾). Chin. Phys. B, 2010, 19(11): 113205.
No Suggested Reading articles found!