Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 097302    DOI: 10.1088/1674-1056/19/9/097302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

The physical process analysis of the capacitance–voltage characteristics of AlGaN/AlN/GaN high electron mobility transistors

Wang Xin-Hua(王鑫华), Zhao Miao(赵妙), Liu Xin-Yu(刘新宇), Pu Yan(蒲颜), Zheng Ying-Kui(郑英奎), and Wei Ke(魏珂)
Key Laboratory of Microelectronics Device & Integrated Technology, Institute of Microelectronics of Chinese Academy of Sciences, Beijing 100029, China
Abstract  This paper deduces the expression of the Schottky contact capacitance of AlGaN/AlN/GaN high electron mobility transistors (HEMTs), which will help to understand the electron depleting process. Some material parameters related with capacitance–voltage profiling are given in the expression. Detailed analysis of the forward-biased capacitance has been carried on. The gate capacitance of undoped AlGaN/AlN/GaN HEMT will fall under forward bias. If a rising profile is obviously observed, the donor-like impurity or trap is possibly introduced in the barrier.
Keywords:  AlGaN/AlN/GaN      HEMT      capacitance–voltage characteristics      trap  
Received:  03 November 2009      Revised:  24 March 2010      Accepted manuscript online: 
PACS:  7320D  
  7280E  
  7360L  
Fund: Project supported by the National Basic Research Program (973) of China (Grant No. 2010CB327500) and the National Natural Science Foundation of China (Grant Nos. 60976059 and 60890191).

Cite this article: 

Wang Xin-Hua(王鑫华), Zhao Miao(赵妙), Liu Xin-Yu(刘新宇), Pu Yan(蒲颜), Zheng Ying-Kui(郑英奎), and Wei Ke(魏珂) The physical process analysis of the capacitance–voltage characteristics of AlGaN/AlN/GaN high electron mobility transistors 2010 Chin. Phys. B 19 097302

[1] Adikimenakis A, Aretouli K E, Iliopoulos E, Kostopoulos A, Tsagaraki K, Konstantinidis G and Georgakilas A 2009 Microelectronic Engineering 86 1071
[2] Lisesivdin S B, Balkan N, Makarovsky O, Patane A, Yildiz A, Caliskan M D, Kasap M, Ozcelik S and Ozbay E 2009 J. Appl. Phys. 105 6
[3] Qian F, Leach J H, Xie J Q, Ozgur U, Morkoc H, Zhou L and Smith D J 2009 Proceedings of the SPIE --- The International Society for Optical Engineering 7216 14
[4] Zhou Y G, Shen B, Liu J, Yu H Q, Zhou H M, Qian Y, Zhang R, Shi Y and Zheng Y D 2001 Chin. J. Semiconductors 22 1420
[5] Liu W L, Chen Y L, Balandin A A and Wang K L 2006 Journal of Nanoelectronics and Optoelectronics 1 258
[6] Hashizume T, Alekseev E, Pavlidis D, Boutros K S and Redwing J 2000 J. Appl. Phys. 88 1983
[7] Wang R X, Xu S J, Shi S L, Beling C D, Fung S, Zhao D G, Yang H and Tao X M 2006 Appl. Phys. Lett. 89 3
[8] Gorev N B, Kodzespirova I F, Kostylev S A, Kovalenko Y A and Prokhorov E F 1998 5th Int. Conf. on Solid-State and Integrated Circuit Technology Beijing, China, Oct. 21--23, 1998, p661
[9] Norris G B, Look D C, Kopp W, Klem J and Morkoc H 1985 Appl. Phys. Lett. 47 423
[10] Kwangman P, Hong Bae K and Kae Dal K 1987 IEEE Trans. Electron Devices 34 2422
[11] Zhou Y G, Shen B, Liu J, Zhou H M, Yu H Q, Zhang R, Shi Y and Zheng Y D 2001 Acta Phys. Sin. 50 1774 (in Chinese)
[12] Delagebeaudeuf D and Linh N T 1982 IEEE Trans. Electron Devices 29 955
[13] Anwar A F M and Faraclas E W 2006 Solid-State Electronics 50 1041
[14] Guo L, Wang X, Wang C, Xiao H, Ran J, Luo W, Wang X, Wang B, Fang C and Hu G 2008 Microelectronics Journal 39 777
[15] Kokorev M F and Maleev N A 1996 Solid-State Electronics 39 297
[16] Moloney M J, Ponse F and Morkoc H 1985 IEEE Trans. Electron Devices 32 1675
[17] AbdelRassoul R A, Yakout M A, AbdelFattah A I and Essa S G 2002 Proceedings of the Nineteenth National Radio Science Conference Alexandria, Egypt, May 19--21, 2002, p475
[18] Jang H W, Jeon C M, Kim K H, Kim J K, Bae S B, Lee J H, Choi J W and Lee J L 2002 Appl. Phys. Lett. 81 1249 endfootnotesize
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Generation of a blue-detuned optical storage ring by a metasurface and its application in optical trapping of cold molecules
Chen Ling(凌晨), Yaling Yin(尹亚玲), Yang Liu(刘泱), Lin Li(李林), and Yong Xia(夏勇). Chin. Phys. B, 2023, 32(2): 023301.
[3] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[4] High-performance amorphous In-Ga-Zn-O thin-film transistor nonvolatile memory with a novel p-SnO/n-SnO2 heterojunction charge trapping stack
Wen Xiong(熊文), Jing-Yong Huo(霍景永), Xiao-Han Wu(吴小晗), Wen-Jun Liu(刘文军),David Wei Zhang(张卫), and Shi-Jin Ding(丁士进). Chin. Phys. B, 2023, 32(1): 018503.
[5] Charge self-trapping in two strand biomolecules: Adiabatic polaron approach
D Chevizovich, S Zdravković, A V Chizhov, and Z Ivić. Chin. Phys. B, 2023, 32(1): 010506.
[6] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[7] Impact of AlxGa1-xN barrier thickness and Al composition on electrical properties of ferroelectric HfZrO/Al2O3/AlGaN/GaN MFSHEMTs
Yue Li(李跃), Xingpeng Liu(刘兴鹏), Tangyou Sun(孙堂友), Fabi Zhang(张法碧), Tao Fu(傅涛), Peihua Wang-yang(王阳培华), Haiou Li(李海鸥), and Yonghe Chen(陈永和). Chin. Phys. B, 2022, 31(9): 097307.
[8] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[9] Achieving ultracold Bose-Fermi mixture of 87Rb and 40K with dual dark magnetic-optical-trap
Jie Miao(苗杰), Guoqi Bian(边国旗), Biao Shan(单标), Liangchao Chen(陈良超), Zengming Meng(孟增明), Pengjun Wang(王鹏军), Lianghui Huang(黄良辉), and Jing Zhang(张靖). Chin. Phys. B, 2022, 31(8): 080306.
[10] Enhanced cold mercury atom production with two-dimensional magneto-optical trap
Ye Zhang(张晔), Qi-Xin Liu(刘琪鑫), Jian-Fang Sun(孙剑芳), Zhen Xu(徐震), and Yu-Zhu Wang(王育竹). Chin. Phys. B, 2022, 31(7): 073701.
[11] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[12] Enhancement of fMAX of InP-based HEMTs by double-recessed offset gate process
Bo Wang(王博), Peng Ding(丁芃), Rui-Ze Feng(封瑞泽), Shu-Rui Cao(曹书睿), Hao-Miao Wei(魏浩淼), Tong Liu(刘桐), Xiao-Yu Liu(刘晓宇), Hai-Ou Li(李海鸥), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058506.
[13] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[14] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[15] Extrinsic equivalent circuit modeling of InP HEMTs based on full-wave electromagnetic simulation
Shi-Yu Feng(冯识谕), Yong-Bo Su(苏永波), Peng Ding(丁芃), Jing-Tao Zhou(周静涛), Song-Ang Peng(彭松昂), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(4): 047303.
No Suggested Reading articles found!