Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 097103    DOI: 10.1088/1674-1056/19/9/097103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles study of Ga7As7 ionic cluster and influence of multi-charge on its structure

Yang Jian-Song(杨建宋) and Li Bao-Xing(李宝兴)
Department of Physics, Micro-fluidic Chip Institute, and Key Laboratory of Organ-silicon Chemistry and Material Technology, Hangzhou Normal University, Hangzhou 310036, China
Abstract  This paper investigates the structures and stabilities of neutral Ga7As7 cluster and its ions in detail by using first-principles density functional theory. Many low energy structures of Ga7As7 cluster are found. It confirms that the ground state structure of neutral Ga7As7 cluster is a pentagonal prism with four face atoms like a basket structure, as reported by previous works. The ground state structures of positive Ga7As7 cluster ions are different from that of the neutral cluster. These investigations suggest that Ga atoms occupy the capping positions more easily than As atoms. Mulliken population analyses also show that Ga atoms can lose or obtain charge more easily than As atoms. It finds that the neutral Ga7As7 cluster can become more stable by gaining one or two additional electrons but further more electrons would cause the decrease of binding energy. The ionisation energy increases with the increase of the number of the removed electrons. These calculated results indicate that the net magnetic moment of the neutral Ga7As7 cluster is zero because all electrons are paired together in their respective molecular orbits. But for the ionic Ga7As7 cluster with odd number of electrons, the net magnetic moment is 1.0 μB due to an unpaired electron.
Keywords:  cluster ions      ground-state structure      stability  
Received:  24 February 2010      Revised:  20 March 2010      Accepted manuscript online: 
PACS:  7115F  
  7125W  
  7320  
Fund: Project supported by the Foundation for the Author of National Excellent Doctoral Dissertation of China (Grant No. 200320), and by the National Natural Science Foundation of China (Grant No. 10674039).

Cite this article: 

Yang Jian-Song(杨建宋) and Li Bao-Xing(李宝兴) First-principles study of Ga7As7 ionic cluster and influence of multi-charge on its structure 2010 Chin. Phys. B 19 097103

[1] Mingo N 2004 Appl. Phys. Lett. 84 2652
[2] Persson M P and Xu H Q 2004 Nano. Lett. 4 2409
[3] Motohisa J, Noborisaka J, Takeda J, Inari M and Fukui T 2004 it J. Cryst. Growth 272 180
[4] Sun Y, Khang D Y, Hua F, Hurley K, Nuzzo R G and Rogers J A 2005 Adv. Funct. Mater. 15 30
[5] Zhang C R, Chen Y H, Wang D B, Wu Y Z and Chen H S 2008 it Chin. Phys. B 17 2938
[6] Howes M J and Morgan D V (eds.) 1985 Gallium Arsenate: Materials, Devices, and Circuits (New York: Wiley) p198
[7] O'Brien S C, Liu Y, Zhang Q, Heath J R, Tittle F K, Curl R F and Smalley R E 1986 J. Chem. Phys. 84 4074
[8] Zhang Q L, Liu Y, Curl R F, Tittle F K and Smalley R E 1988 it J. Chem. Phys. 88 1670
[9] Ji H M, Cao Y L, Yang T, Ma W Q, Cao Q and Chen L H 2009 it Acta Phys. Sin. 58 1896 (in Chinese)
[10] Mohammad Al-Laham A and Raghavachari K 1993 J. Chem. Phys. 98 8770
[11] Song K M, Ray A K and Khowash P K 1994 J. Phys. B 27 1637
[12] Vasiliev L, Ogut S and Chelikowsky J R 1999 Phys. Rev. B bf 60 8477
[13] Zhao W, Cao P L, Li B X, Song B and Nakamatsu H 2000 it Phys. Rev. B 62 17138
[14] Lou L, Wang L, Chibante L P F, Laaksonen R T, Nordlander P and Smalley R E 1991 J. Chem. Phys. 94 8015
[15] Andreoni W 1992 Phys. Rev. B 45 4203
[16] Yi J Y 2000 Chem. Phys. Lett. 325 269
[17] Zhao W and Cao P L 2002 J. Phys.: Condens. Matter 14 33
[18] Zhao W, Cal P L and Duan W H 2006 Phys. Lett. A 349 224
[19] Yang J S, Li B X and Zhan S C 2006 Phys. Lett. A 348 416
[20] Yang J S and Li B X 2006 Acta Phys. Sin. 55 6562 (in Chinese)
[21] Zhao J J, Xie R H, Zhou X L, Chen X S and Lu W2006 it Phys. Rev. B 74 035319
[22] Karamanis P, B'egu'e D and Pouchan C 2007 it J. Chem. Phys. 127 094706
[23] Gutsev G L, Johnson E, Mochena M D and Bauschlicher Jr C W 2008 J. Chem. Phys. 128 144707
[24] Gutsev G L, O'Neal Jr R H, Saha B C, Mochena M D, Johnson E and Bauschlicher Jr C W 2008 J. Phys. Chem. A 112 10728
[25] Kohn W and Sham L J 1965 Phys. Rev. A 140 1133
[26] van Lenthe E and Baerends E J 2003 J. Comput. Chem. 24 1142
[27] Becke A D 1988 Phys. Rev. A 38 3098 %Amsterdam, the Netherlands, 2007.
[29] Perdew J P 1986 Phys. Rev. B 33 8822
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[3] Modulational instability of a resonantly polariton condensate in discrete lattices
Wei Qi(漆伟), Xiao-Gang Guo(郭晓刚), Liang-Wei Dong(董亮伟), and Xiao-Fei Zhang(张晓斐). Chin. Phys. B, 2023, 32(3): 030502.
[4] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[5] Improvement of coercivity thermal stability of sintered 2:17 SmCo permanent magnet by Nd doping
Chao-Zhong Wang(王朝中), Lei Liu(刘雷), Ying-Li Sun(孙颖莉), Jiang-Tao Zhao(赵江涛), Bo Zhou (周波), Si-Si Tu(涂思思), Chun-Guo Wang(王春国), Yong Ding(丁勇), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2023, 32(2): 020704.
[6] Formation of nanobubbles generated by hydrate decomposition: A molecular dynamics study
Zilin Wang(王梓霖), Liang Yang(杨亮), Changsheng Liu(刘长生), and Shiwei Lin(林仕伟). Chin. Phys. B, 2023, 32(2): 023101.
[7] Ion migration in metal halide perovskite QLEDs and its inhibition
Yuhui Dong(董宇辉), Danni Yan(严丹妮), Shuai Yang(杨帅), Naiwei Wei(魏乃炜),Yousheng Zou(邹友生), and Haibo Zeng(曾海波). Chin. Phys. B, 2023, 32(1): 018507.
[8] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[9] Memristor hyperchaos in a generalized Kolmogorov-type system with extreme multistability
Xiaodong Jiao(焦晓东), Mingfeng Yuan(袁明峰), Jin Tao(陶金), Hao Sun(孙昊), Qinglin Sun(孙青林), and Zengqiang Chen(陈增强). Chin. Phys. B, 2023, 32(1): 010507.
[10] Parametric decay instabilities of lower hybrid waves on CFETR
Taotao Zhou(周涛涛), Nong Xiang(项农), Chunyun Gan(甘春芸), Guozhang Jia(贾国章), and Jiale Chen(陈佳乐). Chin. Phys. B, 2022, 31(9): 095201.
[11] Kinetic theory of Jeans' gravitational instability in millicharged dark matter system
Hui Chen(陈辉), Wei-Heng Yang(杨伟恒), Yu-Zhen Xiong(熊玉珍), and San-Qiu Liu(刘三秋). Chin. Phys. B, 2022, 31(7): 070401.
[12] Propagation and modulational instability of Rossby waves in stratified fluids
Xiao-Qian Yang(杨晓倩), En-Gui Fan(范恩贵), and Ning Zhang(张宁). Chin. Phys. B, 2022, 31(7): 070202.
[13] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
[14] Stability and luminescence properties of CsPbBr3/CdSe/Al core-shell quantum dots
Heng Yao(姚恒), Anjiang Lu(陆安江), Zhongchen Bai(白忠臣), Jinguo Jiang(蒋劲国), and Shuijie Qin(秦水介). Chin. Phys. B, 2022, 31(4): 046106.
[15] Influence of various shapes of nanoparticles on unsteady stagnation-point flow of Cu-H2O nanofluid on a flat surface in a porous medium: A stability analysis
Astick Banerjee, Krishnendu Bhattacharyya, Sanat Kumar Mahato, and Ali J. Chamkha. Chin. Phys. B, 2022, 31(4): 044701.
No Suggested Reading articles found!