Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 094205    DOI: 10.1088/1674-1056/19/9/094205
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Robust generation of qutrit entanglement via adiabatic passage of dark states

Yang Zhen-Biao(杨贞标)†ger, Wu Huai-Zhi(吴怀志), and Zheng Shi-Biao(郑仕标)‡ger
Department of Physics and State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, Fuzhou 350002, China
Abstract  We propose a scheme for the deterministic generation of qutrit entanglement for two atoms trapped in an optical cavity. Taking advantage of the adiabatic passage, the operation is immune to atomic spontaneous emission as the atomic excited states are never populated; under certain conditions, the probability that the cavity is excited is negligible. We also study the influences of the dissipation due to the atomic spontaneous emission and cavity decay.
Keywords:  qutrit entanglement      adiabatic passage      dark states      cavity quantum electrodynamics  
Received:  09 December 2009      Revised:  24 February 2010      Accepted manuscript online: 
PACS:  4250  
  0365  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10674025 and 10974028), the Fujian Natural Science Foundation of China (Grant No. 2009J06002), the Doctoral Foundation of the Ministry of Education of China (Grant Nos. 20070386002 and 20093514110009), the Funds from State Key Laboratory Breeding Base of Photocatalysis, Fuzhou University, and the Funds from the Education Department of Fujian Province of China (Grant No. JB08010).

Cite this article: 

Yang Zhen-Biao(杨贞标), Wu Huai-Zhi(吴怀志), and Zheng Shi-Biao(郑仕标) Robust generation of qutrit entanglement via adiabatic passage of dark states 2010 Chin. Phys. B 19 094205

[1] Nilsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Bell J S 1964 Physics (New York: Long Island City) 1 195
[3] Greenberger D M, Horne M, Shimony A and Zeilinger A 1990 Am. J. Phys. 58 1131
[4] Dür W, Vidal G and Cirac J I 2000 Phys. Rev. A 62 062314
[5] Joo J, Park Y J, Oh S and Kim J 2003 New J. Phys. 5 136
[6] Hardy L 1998 Contemp. Phys. 39 419
[7] Zheng S B 2002 Phys. Rev. A 66 014103
[8] Kaszlikowski D, Gnaciski P, Zukowski M, Miklaszewski W and Zeilinger A 2000 Phys. Rev. Lett. 85 4418
[9] Collins D, Gisin N, Linden N, Massar S and Popescu S 2002 Phys. Rev. Lett. 88 040404
[10] Vaziri A, Weihs G and Zeilinger A 2002 Phys. Rev. Lett. bf 89 240401
[11] Langford N K, Dalton R B, Harvey M D, O'Brien J L, Pryde G J, Gilchrist A, Bartlett S D and White A G 2004 Phys. Rev. Lett. 93 053601
[12] Thew R T, Ac'yn A, Zbinden H and Gisin N 2004 Phys. Rev. Lett. 93 010503
[13] Son W, Lee J Y and Kim M S 2006 Phys. Rev. Lett. 96 060406
[14] Cerf N J, Bourennane M, Karlsson A and Gisin N 2002 Phys. Rev. Lett. 88 127902
[15] Walborn S P, Lemelle D S, Almeida M P and Souto Ribeiro P H 2006 Phys. Rev. Lett. 96 090501
[16] Walther H, Varcoe B T H, Englert B G and Becker T 2006 Rep. Prog. Phys. 69 1325
[17] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[18] Gerry C C 1996 Phys. Rev. A 53 2857
[19] Gerry C C 1996 Phys. Rev. A 53 4591
[20] Cirac J I and Zoller P 1994 Phys. Rev. A 50 R2799
[21] Bergou J A and Hillery M 1997 Phys. Rev. A 55 4585
[22] Zheng S B 1999 J. Opt. B: Quantum Semiclass. Opt. 1 534
[23] Zheng S B 2001 Phys. Rev. Lett. 87 230404
[24] Ikram M and Saif F 2002 Phys. Rev. A 66 014304
[25] Guo G P, Li C F, Li J and Guo G C 2002 Phys. Rev. A 65 042102
[26] Guo G C and Zhang Y S 2002 Phys. Rev. A 65 054302
[27] Zheng S B 2005 J. Opt. B: Quantum Semiclass. Opt. 7 10
[28] Hagley E, Ma'ytre X, Nogues G, Wunderlich C, Brune M, Raimond J M and Haroche S 1997 Phys. Rev. Lett. 79 1
[29] Osnaghi S, Bertet P, Auffeves A, Maioli P, Brune M, Raimond J M and Haroche S 2001 Phys. Rev. Lett. 87 037902
[30] Rauschenbeutel A, Bertet P, Osnaghi S, Nogues G, Brune M, Raimond J M and Haroche S 2000 Phys. Rev. A 64 050301(R)
[31] Rauschenbeutel A, Nogues G, Osnaghi S, Bertet P, Brune M, Raimond J M and Haroche S 2000 Science 288 2024
[32] Zou X B, Pahlke K and Mathis W 2003 Phys. Rev. A 67 044301
[33] Zheng S B 2003 Phys. Rev. A 68 035801
[34] Zhang Z M, Yang W X and Li J H 2004 Chin. Phys. Lett. 21 846
[35] Zou X B and Mathis W 2004 Phys. Rev. A 70 035802
[36] Lin X M, Zhou Z W, Wu Y C, Wang C Z and Guo G C 2005 Chin. Phys. Lett. 22 1318
[37] Jin G S, Li S S, Feng S L and Zheng H Z 2004 Phys. Rev. A bf 69 034302
[38] Zheng S B 2006 Chin. Phys. Lett. 23 610
[39] Yang Z B and Su W J 2007 Chin. Phys. 16 435
[40] Raimond J M, Brune M and Haroche S 2001 Rev. Mod. Phys. 73 565
[41] Miller R, Northup T E, Birnbaum K M, Boca A, Boozer A D and Kimble H J 2005 J. Phys. B: At. Mol. Opt. Phys. 38 S551
[42] Gaubatz U, Rudecki P, Schiemann S and Bergmann K 1990 J. Chem. Phys. 92 5363
[43] Bergmann K, Theuer H and Shore B W 1998 em Rev. Mod. Phys. 70 1003
[44] Marte P, Zoller P and Hall J L 1991 Phys. Rev. A 44 R4118
[45] Vitanov N V, Suominen K A and Shore B W 1999 J. Phys. B: At. Mol. Opt. Phys. 32 4535
[46] Parkins A S, Marte P, Zoller P and Kimble H J 1993 Phys. Rev. Lett. 71 3095
[47] Amniat-Talab M, Gu'erin S, Sangouard N and Jauslin H R 2005 Phys. Rev. A 71 023805
[48] Amniat-Talab M, Gu'erin S and Hans-Rudolf J 2005 Phys. Rev. A 72 012339
[49] Zheng S B 2005 J. Opt. B: Quantum Semiclass. Opt. 7 139
[50] Wu Y 1996 Phys. Rev. A 54 1586
[51] Yang X, Wu Y and Li Y 1997 Phys. Rev. A 55 4545
[52] Wu Y and Yang X 2005 Phys. Rev. A 71 053806
[53] Pellizzari T, Gardiner S A, Cirac J I and Zoller P 1995 Phys. Rev. Lett. 75 3788
[54] Boozer A D, Boca A, Miller R, Northup T E and Kimble H J 2007 Phys. Rev. Lett. 98 193601
[55] Wilk J, Webster S C, Kuhn A and Rempe G 2007 Science 317 488
[56] McKeever J, Boca A, Boozer A D, Miller R, Buck J R, Kuzmich A and Kimble H J 2004 Science 303 1992
[57] Hijlkema M, Weber B, Specht H P, Webster S C, Kuhn1 A and Rempe G 2007 Nature Physics 3 253
[58] Volz J, Weber M, Schlenk D, Rosenfeld W, Vrana J, Saucke K, Kurtsiefer C and Weinfurter H 2006 Phys. Rev. Letts. 96 030404
[59] Bennett C H, Brassard G, Cr'epeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[60] Yang Z B, Wu H Z, Su W J, Zhong Z R and Zheng S B 2008 Opt. Commun. 281 1145
[61] Bose S, Knight P L, Plenio M B and Vedral V 1999 Phys. Rev. Lett. 83 5158
[62] Serafini A, Mancini S and Bose S 2006 Phys. Rev. Lett. bf 96 010503
[63] Lin L H 2009 Chin. Phys. B 18 1867
[64] Ma S S and Chen M F 2009 Chin. Phys. B 18 3247
[65] Zheng S B 2010 Chin. Phys. B 19 064204
[66] Plenio M B and Knight P L 1998 Rev. Mod. Phys. 70 101
[67] Goto H and Ichimura K 2008 Phys. Rev. A 77 013816 endfootnotesize
[1] Reversible waveform conversion between microwave and optical fields in a hybrid opto-electromechanical system
Li-Guo Qin(秦立国), Zhong-Yang Wang(王中阳), Jie-Hui Huang(黄接辉), Li-Jun Tian(田立君), and Shang-Qing Gong(龚尚庆). Chin. Phys. B, 2021, 30(6): 068502.
[2] Perfect photon absorption based on the optical parametric process
Yang Zhang(张旸), Yu-Bo Ma(马宇波), Xin-Ping Li(李新平), Yu Guo(郭钰), and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(6): 064203.
[3] Stable quantum interference enabled by coexisting detuned and resonant STIRAPs
Dan Liu(刘丹), Yichun Gao(高益淳), Jianqin Xu(许建琴), and Jing Qian(钱静). Chin. Phys. B, 2021, 30(5): 053701.
[4] Absorption interferometer of two-sided cavity
Miao-Di Guo(郭苗迪) and Hong-Mei Li(李红梅). Chin. Phys. B, 2021, 30(5): 054202.
[5] Influence of driving ways on measurement of relative phase in a two-atoms cavity system
Daqiang Bao(包大强), Jingping Xu(许静平), Yaping Yang(羊亚平). Chin. Phys. B, 2020, 29(4): 043702.
[6] Theoretical analysis of the coupling between Feshbach states and hyperfine excited states in the creation of 23Na40K molecule
Ya-Xiong Liu(刘亚雄), Bo Zhao(赵博). Chin. Phys. B, 2020, 29(2): 023103.
[7] Qubits based on semiconductor quantum dots
Xin Zhang(张鑫), Hai-Ou Li(李海欧), Ke Wang(王柯), Gang Cao(曹刚), Ming Xiao(肖明), Guo-Ping Guo(郭国平). Chin. Phys. B, 2018, 27(2): 020305.
[8] Dynamic properties of atomic collective decay in cavity quantum electrodynamics
Yu-Feng Han(韩玉峰), Cheng-Jie Zhu(朱成杰), Xian-Shan Huang(黄仙山), Ya-Ping Yang(羊亚平). Chin. Phys. B, 2018, 27(12): 124206.
[9] Implementation of quantum phase gate between two atoms via Rydberg antiblockade and adiabatic passage
Xi Tan(谭曦), Jin-Lei Wu(吴金雷), Can Deng(邓灿), Wei-Jian Mao(毛伟建), Hai-Tao Wang(王海涛), Xin Ji(计新). Chin. Phys. B, 2018, 27(10): 100307.
[10] Controllable double electromagnetically induced transparency in a closed four-level-loop cavity–atom system
Miao-Di Guo(郭苗迪), Xue-Mei Su(苏雪梅). Chin. Phys. B, 2017, 26(7): 074207.
[11] Geometrical representation of coherent tunneling process in two-waveguide and three-waveguide coupler
Jian Shi(时坚), Rui-Qiong Ma(马瑞琼), Zuo-Liang Duan(段作梁), Meng Liang(梁猛), Bao-Yu Chai(柴宝玉), Jun Dong(董军). Chin. Phys. B, 2017, 26(12): 124214.
[12] Effects of magnetic field on photon-induced quantum transport in a single dot-cavity system
Nzar Rauf Abdullah, Aziz H Fatah, Jabar M A Fatah. Chin. Phys. B, 2016, 25(11): 114206.
[13] Implementation of a one-dimensional quantum walk in both position and phase spaces
Qin Hao (秦豪), Xue Peng (薛鹏). Chin. Phys. B, 2014, 23(1): 010301.
[14] Production and detection of ultracold Cs2 molecules via four-photon adiabatic passage
Li Jian (李健), Liu Yong (刘勇), Cong Shu-Lin (丛书林). Chin. Phys. B, 2014, 23(1): 010308.
[15] Generation of four-atom Greenberger-Horn-Zeilinger state via adiabatic passage
Zhang Chun-Ling (张春玲), Chen Mei-Feng (陈美锋). Chin. Phys. B, 2013, 22(5): 050307.
No Suggested Reading articles found!