Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 094204    DOI: 10.1088/1674-1056/19/9/094204
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

Concurrence evolution of two qubits coupled with one-mode cavity separately

Liu Wei-Ci(刘伟慈)a), Wang Fa-Qiang(王发强)b), and Liang Rui-Sheng(梁瑞生)b)
a Computer Engineering Department of Nanhai Campus, South China Normal University, Foshan 528225, China; b Laboratory of Photonic Information Technology, School of Information and Photoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
Abstract  The concurrence evolution of two qubits coupled with one-mode cavity separately is investigated exactly without adopting the rotating-wave approximation. The results show that for the resonant case, the concurrence evolution behaviour of the system is similar to that of the Markovian case when the coupling strength is weak, while the concurrence vanishes in a finite time and might revive fractional initial entanglement before it permanently vanishes when the coupling strength is strong. And for the detuning case, the entanglement could periodically recover after complete disentanglement. These results are quite different from those of system subjected to Jaynes–Cummings model.
Keywords:  decoherence      qubit      rotating-wave approximation      cavity  
Received:  12 September 2009      Revised:  21 January 2010      Accepted manuscript online: 
PACS:  4250  
  0365  
Fund: Project supported by the State Key Program for Basic Research of China(Grant No. 2007CB307002), and the Natural Science Foundation of Guangdong Province of China(Grant No. 8151063201000051).

Cite this article: 

Liu Wei-Ci(刘伟慈), Wang Fa-Qiang(王发强), and Liang Rui-Sheng(梁瑞生) Concurrence evolution of two qubits coupled with one-mode cavity separately 2010 Chin. Phys. B 19 094204

[1] Di'osi L 2003 Lect. Notes Phys. 622 157
[2] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140404
[3] Santos M F, Milman P, Davidovich L and Zagury N 2006 Phys. Rev. A 73 040305(R)
[4] Yonac M, Yu T and Eberly J H 2006 J. Phys. B: At. Mol. Opt. Phys. 39 S621
[5] Yu T and Eberly J H 2006 Phys. Rev. Lett. 97 140403
[6] Almeida M P, de Melo F, Hor-Meyll M, Salles A, Walborn S P, Ribeiro Souto P H and Davidovich L 2007 Science 316 579
[7] Ikram M, Li F L and Zubairy M S 2007 Phys. Rev. A 75 062336
[8] Chou C H, Yu T and Hu B L 2008 Phys. Rev. E 77 011112
[9] Al-Qasimi A and James D F V 2008 Phys. Rev. A 77 012117
[10] Schlosshauer M, Hines A P and Milburn G J 2008 Phys. Rev. A 77 022111
[11] Dajka J, Mierzejewski M and Luczka J 2008 Phys. Rev. A 77 042316
[12] Cao X and Zheng H 2008 Phys. Rev. A 77 022320
[13] Bellomo B, Franco R Lo and Compagno G 2007 Phys. Rev. Lett. 99 160502
[14] Wang FQ, Zhang Z M and Liang R S 2008 Phys. Rev. A 78 062318
[15] Zheng Q, Zhang X P and Ren Z Z 2008 Chin. Phys. B 17 3553
[16] Wang F Q, Zhang Z M and Liang R S 2009 Chin. Phys. B 18 597
[17] Chen L, Shao X Q and Zhang S 2009 Chin. Phys. B 18 888
[18] Dodd P J and Halliwell J J 2004 Phys. Rev. A 69 052105
[19] Dodd P J 2004 Phys. Rev. A 69 052106
[20] Louisell W H 1973 Quantum Statistical Properties of Radiation (New York: John Wiley & Sons) Chap.5 and Chap.6
[21] Puri R R 2001 Mathematical Methods of Quantum Optics Springer Series in Optical Sciences Vol.79 (Berlin: Springer-Verlag) Chap.1 and Chap.7
[22] Klimov A B, Sainz I and Chumakov S M 2003 Phys. Rev. A 68 063811
[23] Meiser D and Meystre P 2006 Phys. Rev. A 74 065801
[24] Irish E K and Schwab K 2003 Phys. Rev. B 68 155311
[25] Ishizaki A and Tanimura Y 2008 Chem. Phys. 347 185
[26] Lu H X, Yang J, Zhang Y D and Chen Z B 2003 Phys. Rev. A 67 024101
[27] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[28] Kleppner D 1981 Phys. Rev. Lett. 47 233
[1] Demonstrate chiral spin currents with nontrivial interactions in superconducting quantum circuit
Xiang-Min Yu(喻祥敏), Xiang Deng(邓翔), Jian-Wen Xu(徐建文), Wen Zheng(郑文), Dong Lan(兰栋), Jie Zhao(赵杰), Xinsheng Tan(谭新生), Shao-Xiong Li(李邵雄), and Yang Yu(于扬). Chin. Phys. B, 2023, 32(4): 047104.
[2] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[3] Application of the body of revolution finite-element method in a re-entrant cavity for fast and accurate dielectric parameter measurements
Tianqi Feng(冯天琦), Chengyong Yu(余承勇), En Li(李恩), and Yu Shi(石玉). Chin. Phys. B, 2023, 32(3): 030101.
[4] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[5] High-fidelity universal quantum gates for hybrid systems via the practical photon scattering
Jun-Wen Luo(罗竣文) and Guan-Yu Wang(王冠玉). Chin. Phys. B, 2023, 32(3): 030303.
[6] Optomagnonically tunable whispering gallery cavity laser wavelength conversion
Yining Zhu(朱奕宁), Zixu Zhu(朱子虚), Anbang Pei(裴安邦), and Yong-Pan Gao(高永潘). Chin. Phys. B, 2023, 32(2): 024206.
[7] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[8] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[9] Nonreciprocal coupling induced entanglement enhancement in a double-cavity optomechanical system
Yuan-Yuan Liu(刘元元), Zhi-Ming Zhang(张智明), Jun-Hao Liu(刘军浩), Jin-Dong Wang(王金东), and Ya-Fei Yu(於亚飞). Chin. Phys. B, 2022, 31(9): 094203.
[10] High-sensitivity methane monitoring based on quasi-fundamental mode matched continuous-wave cavity ring-down spectroscopy
Zhe Li(李哲), Shuang Yang(杨爽), Zhirong Zhang(张志荣), Hua Xia(夏滑), Tao Pang(庞涛),Bian Wu(吴边), Pengshuai Sun(孙鹏帅), Huadong Wang(王华东), and Runqing Yu(余润磬). Chin. Phys. B, 2022, 31(9): 094207.
[11] Steering quantum nonlocalities of quantum dot system suffering from decoherence
Huan Yang(杨欢), Ling-Ling Xing(邢玲玲), Zhi-Yong Ding(丁智勇), Gang Zhang(张刚), and Liu Ye(叶柳). Chin. Phys. B, 2022, 31(9): 090302.
[12] Single-mode lasing in a coupled twin circular-side-octagon microcavity
Ke Yang(杨珂), Yue-De Yang(杨跃德), Jin-Long Xiao(肖金龙), and Yong-Zhen Huang(黄永箴). Chin. Phys. B, 2022, 31(9): 094205.
[13] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[14] Design and high-power test of 800-kW UHF klystron for CEPC
Ou-Zheng Xiao(肖欧正), Shigeki Fukuda, Zu-Sheng Zhou(周祖圣), Un-Nisa Zaib, Sheng-Chang Wang(王盛昌), Zhi-Jun Lu(陆志军), Guo-Xi Pei(裴国玺), Munawar Iqbal, and Dong Dong(董东). Chin. Phys. B, 2022, 31(8): 088401.
[15] Photon blockade in a cavity-atom optomechanical system
Zhong Ding(丁忠) and Yong Zhang(张勇). Chin. Phys. B, 2022, 31(7): 070304.
No Suggested Reading articles found!