Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(9): 090504    DOI: 10.1088/1674-1056/19/9/090504
GENERAL Prev   Next  

Generalised synchronisation of spatiotemporal chaos using feedback control method and phase compression

Wang Xing-Yuan(王兴元) and Zhang Na(张娜)
Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
Abstract  Coupled map lattices are taken as examples to study the synchronisation of spatiotemporal chaotic systems. First, a generalised synchronisation of two coupled map lattices is realised through selecting an appropriate feedback function and appropriate range of feedback parameter. Based on this method we use the phase compression method to extend the range of the parameter. So, we integrate the feedback control method with the phase compression method to implement the generalised synchronisation and obtain an exact range of feedback parameter. This technique is simple to implement in practice. Numerical simulations show the effectiveness and the feasibility of the proposed program.
Keywords:  coupled map lattice      generalised synchronisation      feedback control      phase compression  
Received:  09 March 2010      Revised:  25 March 2010      Accepted manuscript online: 
PACS:  0545  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60573172 and 60973152), the Doctoral Program Foundation of Institution of Higher Education of China (Grant No. 20070141014), and the Natural Science Foundation of Liaoning Province, China (Grant No. 20082165).

Cite this article: 

Wang Xing-Yuan(王兴元) and Zhang Na(张娜) Generalised synchronisation of spatiotemporal chaos using feedback control method and phase compression 2010 Chin. Phys. B 19 090504

[1] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[2] Carroll T L and Pecora L M 1991 IEEE Trans. on Circuits Systems 38 453
[3] Guo H J, Yin Y W and Wang H M 2008 Chin. Phys. B 17 1652
[4] Qi W and Wang Y H 2009 Chin. Phys. B 18 1404
[5] Wang X Y, Gulzila A and Wang M J 2008 J. Dyn. Control 6 40
[6] Zhang H G, Ma D Z, Wang Z S and Feng J 2010 Acta. Phys. Sin. bf 59 147 (in Chinese)
[7] Kapral R 1985 Phys. Rev. A 31 3868
[8] Jiang Y 1998 Phys. Lett. A 240 60
[9] Xie F G and Hu G 1996 Phys. Rev. E 53 4439
[10] Yin X H, Ren Y and Shan X M 2002 Chaos, Solitons and Fractals 14 1077
[11] Xue Y J and Yang S Y 2003 Chaos, Solitons and Fractals 17 967
[12] Alexander A and Uzrich P 2008 Phys. Rev. E 77 016201
[13] Gong X F, Chen H and Li F L 1998 Phys. Lett. A 237 217
[14] Liu Z H, Chen S G and Hu B 1999 Phys. Rev. E 59 2817
[15] L"u L, Li G and Chai Y 2008 Acta. Phys. Sin. 57 7517 (in Chinese)
[16] Kaneko K 1985 Prog. Theor. Phys. 74 1033
[17] Li Y and Zhang X 2006 Phys. Lett. A 357 209
[1] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[2] An image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree
Yining Su(苏怡宁), Xingyuan Wang(王兴元), and Shujuan Lin(林淑娟). Chin. Phys. B, 2022, 31(11): 110503.
[3] Influence of homodyne-based feedback control on the entropic uncertainty in open quantum system
Juju Hu(胡菊菊), Qin Xue(薛琴). Chin. Phys. B, 2019, 28(7): 070303.
[4] H couple-group consensus of stochastic multi-agent systems with fixed and Markovian switching communication topologies
Muyun Fang(方木云), Cancan Zhou(周灿灿), Xin Huang(黄鑫), Xiao Li(李晓), Jianping Zhou(周建平). Chin. Phys. B, 2019, 28(1): 010703.
[5] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[6] Quantum speed limit time of a two-level atom under different quantum feedback control
Min Yu(余敏), Mao-Fa Fang(方卯发), Hong-Mei Zou(邹红梅). Chin. Phys. B, 2018, 27(1): 010303.
[7] Successive lag synchronization on dynamical networks with communication delay
Xin-Jian Zhang(张新建), Ai-Ju Wei(韦爱举), Ke-Zan Li(李科赞). Chin. Phys. B, 2016, 25(3): 038901.
[8] Partial and complete periodic synchronization in coupled discontinuous map lattices
Yang Ke-Li (杨科利), Chen Hui-Yun (陈会云), Du Wei-Wei (杜伟伟), Jin Tao (金涛), Qu Shi-Xian (屈世显). Chin. Phys. B, 2014, 23(7): 070508.
[9] A control method applied to mixed traffic flow for the coupled-map car-following model
Cheng Rong-Jun (程荣军), Han Xiang-Lin (韩祥临), Lo Siu-Ming (卢兆明), Ge Hong-Xia (葛红霞). Chin. Phys. B, 2014, 23(3): 030507.
[10] Dissipative preparation of a steady three-dimensional entangled state via quantum-jump-based feedback
Chen Li (陈丽), Wang Hong-Fu (王洪福), Zhang Shou (张寿). Chin. Phys. B, 2014, 23(3): 030301.
[11] An improved car-following model with consideration of the lateral effect and its feedback control research
Zheng Ya-Zhou (郑亚周), Zheng Peng-Jun (郑彭军), Ge Hong-Xia (葛红霞). Chin. Phys. B, 2014, 23(2): 020503.
[12] Feedback control of wave segments in excitable medium
Wu Ning-Jie (吴宁杰), Gao Hong-Jun (高洪俊), Ying He-Ping (应和平). Chin. Phys. B, 2013, 22(5): 050501.
[13] A novel image block cryptosystem based on spatiotemporal chaotic system and chaotic neural network
Wang Xing-Yuan (王兴元), Bao Xue-Mei (鲍雪梅). Chin. Phys. B, 2013, 22(5): 050508.
[14] Chaotic dynamic behavior analysis and control for a financial risk system
Zhang Xiao-Dan (张晓丹), Liu Xiang-Dong (刘祥东), Zheng Yuan (郑媛), Liu Cheng (刘澄). Chin. Phys. B, 2013, 22(3): 030509.
[15] Feedback control and synchronization of Mandelbrot sets
Zhang Yong-Ping (张永平). Chin. Phys. B, 2013, 22(1): 010502.
No Suggested Reading articles found!